Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/earthinversion/xgboost_classify_regress
https://github.com/earthinversion/xgboost_classify_regress
Last synced: 14 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/earthinversion/xgboost_classify_regress
- Owner: earthinversion
- Created: 2024-11-07T02:38:23.000Z (3 months ago)
- Default Branch: main
- Last Pushed: 2024-11-07T02:39:53.000Z (3 months ago)
- Last Synced: 2024-11-07T03:28:20.534Z (3 months ago)
- Language: Jupyter Notebook
- Size: 0 Bytes
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# XGBoost Prediction and Visualization
This repository provides utilities for training, saving, and loading XGBoost models for classification and regression tasks, including data visualization using SHAP (SHapley Additive exPlanations) values. The project includes Jupyter notebooks demonstrating classification on CSV data and the Iris dataset, as well as regression on the California Housing dataset.## Installation
```bash
conda env create -f environment.yml
conda activate xgboost_training
``````bash
conda activate xgboost_training
```## Dependencies
1. XGBoost
1. SHAP (for explainability)
1. Matplotlib (for plotting)
1. Scikit-Learn (for datasets and metrics)## Troubleshooting
- for osx-arm64
```bash
conda install numpy pandas scipy scikit-learn matplotlib joblib xgboost
```- for osx-64
```bash
conda install numpy=1.19.2 pandas=1.0.1 scipy=1.6.1 scikit-learn=0.24.0 matplotlib=3.1.3 joblib=0.15.1 xgboost=1.3.1
```