An open API service indexing awesome lists of open source software.

https://github.com/edaaydinea/mathematicsformlanddatascience


https://github.com/edaaydinea/mathematicsformlanddatascience

Last synced: 7 months ago
JSON representation

Awesome Lists containing this project

README

          

# Mathematics for Machine Learning and Data Science Specialization

- **Where:** Coursera
- **University\Institute:** DeepLearning.AI
- **Status:** In Progress

## Courses in this Specialization

1. Linear Algebra for Machine Learning and Data Science
- **Status:** Completed
- **Link:**

2. Calculus for Machine Learning and Data Science
- **Status:**Not Started
- **Link:**

3. Probability & Statistics for Machine Learning & Data Science
- **Status:** In Progress
- **Link:**

...

## Course Notes & Programming Activities

### Course 1: Linear Algebra for Machine Learning and Data Science

- **Week 1: Systems of linear equations**
- [Introduction to Python Matrices and NumPy](L1/W1/C1_W1_Lab_1_introduction_to_numpy_arrays.ipynb)
- [Representing Systems of Equations as Matrices](L1/W1/C1_W1_Lab_2_linear_systems_as_matrices.ipynb)

- **Week 2: Solving systems of linear equations**
- [Introduction to the Numpy.linalg sub-library](L1/W2/C1W2_UGL_solving_linear_systems_3_variables.ipynb)
- [Gaussian Elimination](L1/W2/C1W2_Assignment.ipynb)

- **Week 3: Vectors and Linear Transformations**
- [Vector Operations: Scalar Multiplication, Sum and Dot Product of Vectors](L1/W3/C1W3_UGL_1_vector_operations.ipynb)
- [Matrix Multiplication](L1/W3//C1W3_UGL_2_matrix_multiplication.ipynb)
- [Linear Transformations](L1/W3/C1W3_UGL_3_linear_transformations.ipynb)
- [Linear Transformations and Neural Networks](L1/W3/C1W3_Assignment.ipynb)

- **Week 4: Determinants and Eigenvalues**
- [Interpreting Eigenvalues and Eigenvectors](L1/W4/C1_W4_Lab_1_Interpreting_eigenvalues_and_eigenvectors.ipynb)
- [Eigenvalues and Eigenvectors in Python](L1/W4/C1W4_Assignment.ipynb)

### Course 3: Probability & Statistics for Machine Learning & Data Science

- **Week 1: Introduction to Probability and Probability Distributions**
- [Lecture Note 1](L3/W1/lecture_note1.md)
- [Monty Hall Problem](L3/W1/C3_W1_Lab_1_Monty_Hall.ipynb)
- [Birthday Problem](L3/W1/C3_W1_Lab_2_Birthday_Problems.ipynb)
- [Lecture Note 2](L3/W1/lecture_note2.md)
- [Intro to Pandas World Happiness](L3/W1/intro-to-pandas-world-happiness.ipynb)
- [Rideshare Project](L3/W1/Rideshare_Project_Week1.ipynb)
- [Naive Bayes](L3/W1/C3W1_Assignment.ipynb)
- **Week 2: Describing probability distributions and probability distributions with multiple variables**
- **Week 3: Sampling and Point estimation**
- **Week 4: Confidence intervals and Hypothesis Testing**

- **Week 2: Describing probability distributions and probability distributions with multiple variables**
- [Lecture Note](L3/W2/lecture_note.ipynb)
- [Summary statistics and visualization of data sets](L3/W2/C2W2_UGL_datasets.ipynb)
- [Exploratory Data Analysis - Data Visualization and Summary Statistics](L3/W2/Rideshare_Project_Week2.ipynb)
- [Lab: Simulate Dice Throws with NumPy](L3/W2/C3W2_UGL_Dice_Simulations.ipynb)

- **Week 3: Sampling and Point Estimation**
- [Lecture Note](L3/W3/lecture_note.ipynb)
- [Lab: Central Limit Theorem](L3/W3/C3W3_UGL_Central_Limit_Theorem.ipynb)
- [Lab: Exploratory Data Analysis - Linear Regression](L3/W3/linear-regression-world-happiness.ipynb)
...

## Certificates

- [**Course 1: Linear Algebra for Machine Learning and Data Science**](https://coursera.org/share/1b394cac27a8c72f89cf972124ed381e)