https://github.com/edgeimpulse/example-active-learning-linux-python-sdk
https://github.com/edgeimpulse/example-active-learning-linux-python-sdk
Last synced: about 2 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/edgeimpulse/example-active-learning-linux-python-sdk
- Owner: edgeimpulse
- License: bsd-3-clause-clear
- Created: 2023-09-28T08:18:57.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2025-02-10T10:28:29.000Z (3 months ago)
- Last Synced: 2025-03-07T00:58:40.683Z (about 2 months ago)
- Language: Python
- Size: 4.07 MB
- Stars: 0
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Active learning - Linux Inferencing Python SDK - Audio
This example comes from the [Edge Impulse Linux Inferencing Python SDK](https://github.com/edgeimpulse/linux-sdk-python/) that has been slightly modify to upload the raw data back to Edge Impulse based on the inference results.
To run the example:
1. Install the depedencies:
```
pip3 install -r requirements.txt
```2. Grab your the API key of the project you want to upload the infered results raw data:

3. Past the new key in the `EI_API_KEY` variable in the `audio-classify-export.py` file. Alternatively, load it from your environment variable:
```
export EI_API_KEY='ei_xxxx'
```4. Download your modelfile.eim:
```
edge-impulse-linux-runner --download modelfile.eim
```5. Run the script:
```
python3 audio-classify-export.py modelfile.eim yes,no 0.6 0.8
```Here are the arguments you can set:
* `modelfile.eim`, path the model.eim
* `yes,no`, labels to upload, separated by comas, no space
* `0.6`, low confidence threshold
* `0.8`, high confidence threshold
* ``In a keyword spotting model, it can give the following results:
```
python3 audio-classify-export.py modelfile.eim yes,no 0.6 0.8
['modelfile.eim', 'yes,no', '0.6', '0.8']
{'model_parameters': {'axis_count': 1, 'frequency': 16000, 'has_anomaly': 0, 'image_channel_count': 0, 'image_input_frames': 0, 'image_input_height': 0, 'image_input_width': 0, 'input_features_count': 16000, 'interval_ms': 0.0625, 'label_count': 4, 'labels': ['no', 'noise', 'unknown', 'yes'], 'model_type': 'classification', 'sensor': 1, 'slice_size': 4000, 'use_continuous_mode': True}, 'project': {'deploy_version': 29, 'id': 10487, 'name': 'Keywords Detection', 'owner': 'Demo Team'}}
Loaded runner for "Demo Team / Keywords Detection"
0 --> MacBook Pro Microphone
2 --> Microsoft Teams Audio
3 --> Descript Loopback Recorder
4 --> ZoomAudioDevice
Type the id of the audio device you want to use:
0
selected Audio device: 0Result (0 ms.) no: 0.18 noise: 0.16 unknown: 0.20 yes: 0.46
Result (0 ms.) no: 0.13 noise: 0.58 unknown: 0.22 yes: 0.07
Result (0 ms.) no: 0.00 noise: 0.89 unknown: 0.10 yes: 0.01
Result (0 ms.) no: 0.00 noise: 0.01 unknown: 0.04 yes: 0.95
Result (0 ms.) no: 0.00 noise: 0.82 unknown: 0.10 yes: 0.07
Result (0 ms.) no: 0.02 noise: 0.77 unknown: 0.13 yes: 0.08
Result (0 ms.) no: 0.01 noise: 0.14 unknown: 0.26 yes: 0.59
Result (0 ms.) no: 0.07 noise: 0.76 unknown: 0.15 yes: 0.01
Result (0 ms.) no: 0.04 noise: 0.24 unknown: 0.11 yes: 0.61 Uploading sample to Edge Impulse...
Successfully uploaded audio to Edge Impulse.Result (0 ms.) no: 0.02 noise: 0.93 unknown: 0.04 yes: 0.00
Result (0 ms.) no: 0.01 noise: 0.67 unknown: 0.32 yes: 0.01
Result (0 ms.) no: 0.02 noise: 0.18 unknown: 0.23 yes: 0.57
Result (0 ms.) no: 0.07 noise: 0.70 unknown: 0.22 yes: 0.01
Result (0 ms.) no: 0.03 noise: 0.83 unknown: 0.12 yes: 0.02
Result (0 ms.) no: 0.24 noise: 0.44 unknown: 0.21 yes: 0.11
Result (0 ms.) no: 0.23 noise: 0.25 unknown: 0.42 yes: 0.10
Result (0 ms.) no: 0.04 noise: 0.76 unknown: 0.18 yes: 0.02
Result (0 ms.) no: 0.16 noise: 0.67 unknown: 0.12 yes: 0.05
Result (0 ms.) no: 0.12 noise: 0.81 unknown: 0.06 yes: 0.01
Result (0 ms.) no: 0.54 noise: 0.24 unknown: 0.12 yes: 0.10
Result (0 ms.) no: 0.01 noise: 0.91 unknown: 0.05 yes: 0.03
Result (0 ms.) no: 0.65 Uploading sample to Edge Impulse...
Successfully uploaded audio to Edge Impulse.
noise: 0.08 unknown: 0.17 yes: 0.10
Result (0 ms.) no: 0.00 noise: 0.96 unknown: 0.03 yes: 0.00
Result (0 ms.) no: 0.04 noise: 0.80 unknown: 0.13 yes: 0.03
Result (0 ms.) no: 0.03 noise: 0.27 unknown: 0.16 yes: 0.54
Result (0 ms.) no: 0.05 noise: 0.66 unknown: 0.15 yes: 0.14
Result (0 ms.) no: 0.08 noise: 0.74 unknown: 0.14 yes: 0.04
Result (0 ms.) no: 0.01 noise: 0.87 unknown: 0.11 yes: 0.02
Result (0 ms.) no: 0.01 noise: 0.87 unknown: 0.06 yes: 0.06
...
```