Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/edublancas/sklearn-evaluation

Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking and Jupyter notebook analysis.
https://github.com/edublancas/sklearn-evaluation

Last synced: 14 days ago
JSON representation

Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking and Jupyter notebook analysis.

Awesome Lists containing this project

README

        

# sklearn-evaluation

![CI](https://github.com/ploomber/sklearn-evaluation/workflows/CI/badge.svg)
[![Documentation Status](https://readthedocs.org/projects/sklearn-evaluation/badge/?version=latest)](https://sklearn-evaluation.readthedocs.io/en/latest/?badge=latest)
[![PyPI version](https://badge.fury.io/py/sklearn-evaluation.svg)](https://badge.fury.io/py/sklearn-evaluation)
[![Coverage Status](https://coveralls.io/repos/github/ploomber/sklearn-evaluation/badge.svg)](https://coveralls.io/github/ploomber/sklearn-evaluation)
[![Twitter](https://img.shields.io/twitter/follow/edublancas?label=Follow&style=social)](https://twitter.com/intent/user?screen_name=ploomber)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)


Join our community
|
Newsletter
|
Contact us
|
Docs
|
Blog
|
Website
|
YouTube

Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking, and Jupyter notebook analysis.

Supports Python 3.7 and higher. Tested on Linux, macOS and Windows.

*Note:* Recent versions likely work on Python 3.6, however, `0.8.2` was the latest version we tested with Python 3.6.


Get Started

![confusion matrix](examples/cm.png)

# Install

```bash
pip install sklearn-evaluation
```

# Features

* [Plotting](https://sklearn-evaluation.ploomber.io/en/latest/classification/basic.html) (confusion matrix, feature importances, precision-recall, roc, elbow curve, silhouette plot)
* Report generation ([example](https://htmlpreview.github.io/?https://github.com/ploomber/sklearn-evaluation/blob/master/examples/report.html))
* [Evaluate grid search results](https://sklearn-evaluation.ploomber.io/en/latest/optimization/grid_search.html)
* [Track experiments using a local SQLite database](https://sklearn-evaluation.ploomber.io/en/latest/comparison/SQLiteTracker.html)
* [Analyze notebooks output](https://sklearn-evaluation.ploomber.io/en/latest/comparison/NotebookCollection.html)
* [Query notebooks with SQL](https://sklearn-evaluation.ploomber.io/en/latest/comparison/nbdb.html)