Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/edyoda/data-science-complete-tutorial
For extensive instructor led learning
https://github.com/edyoda/data-science-complete-tutorial
decision-trees feature-selection linear-regression machine-learning nearest-neighbors numpy pandas pipeline scikit-learn
Last synced: 23 days ago
JSON representation
For extensive instructor led learning
- Host: GitHub
- URL: https://github.com/edyoda/data-science-complete-tutorial
- Owner: edyoda
- Created: 2018-09-15T06:37:32.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2022-10-31T09:44:29.000Z (about 2 years ago)
- Last Synced: 2024-09-30T16:01:05.952Z (about 1 month ago)
- Topics: decision-trees, feature-selection, linear-regression, machine-learning, nearest-neighbors, numpy, pandas, pipeline, scikit-learn
- Language: Jupyter Notebook
- Homepage: https://www.edyoda.com/program/data-scientist-program
- Size: 54.9 MB
- Stars: 1,790
- Watchers: 66
- Forks: 763
- Open Issues: 12
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
In person training - https://www.edyoda.com/program/data-scientist-program
# Machine Learning Git Codebook
**Lesson 1 :** [Introduction to Numpy](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/1.%20NumPy.ipynb) [(Video)](https://www.edyoda.com/resources/videolisting/1263/)
**Lesson 2 :** [Data Wrangling using Pandas](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/2.%20Pandas%20for%20Machine%20Learning.ipynb)
**Lesson 3 :** [Plotting in Python](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/3.%20Plotting.ipynb)
**Lesson 4 :** [Linear Models for Regression & Classification](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/4.%20Linear%20Models%20for%20Classification%20%26%20Regression.ipynb)
**Lesson 5 :** [Preprocessing Data](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/5.%20PreProcessing.ipynb)
**Lesson 6 :** [Decision Trees](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/6.%20Decision%20Tree.ipynb)
**Lesson 7 :** [Naive Bayes](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/7.%20Naive%20Bayes.ipynb)
**Lesson 8 :** [Composite Estimators](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/8.%20Composite%20Estimators%20using%20Pipelines%20%26%20FeatureUnions.ipynb)
**Lesson 9 :** [Model Selection and Evaluation](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/9.%20Model%20Selection%20%26%20Evaluation.ipynb)
**Lesson 10 :** [Feature Selection Techniques](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/10.%20Feature%20Selection%20Techniques.ipynb)
**Lesson 11 :** [Nearest Neighbors](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/11.%20Nearest%20Neighbors.ipynb)
**Lesson 12 :** [Clustering Techniques](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/12.%20Clustering%20Techniques.ipynb)
**Lesson 13 :** [Anomaly Detection](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/13.%20Anomaly%20Detection.ipynb)
**Lesson 14 :** [Support Vector Machines](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/14.%20Support%20Vector%20Machines.ipynb)
**Lesson 15 :** [Dealing with Imbalanced Classes](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/15.%20Dealing%20with%20Imbalanced%20Classes.ipynb)
**Lesson 16 :** [Ensemble Methods](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/16.%20Ensemble%20Methods.ipynb)## Case Study of Classic ML Problems
**Case 1 :** [Linear Regression](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/LR%20Example.ipynb)
**Case 2 :** [Cancer Prediction](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/Cancer%20Prediction.ipynb)
**Case 3 :** [Online Learning](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/Online%20Learning.ipynb)
**Case 4 :** [Customer Churn Prediction](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/Project%20-%20Customer%20Churn%20Prediction.ipynb)
**Case 5 :** [Income Prediction](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/Project%20-%20Income%20Prediction.ipynb)
**Case 6 :** [Predicting Employee Exit](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/Project%20-%20Predicting%20Employee%20Exit.ipynb)
**Case 7 :** [Face Generation](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/Project%20-%20Face%20Generation.ipynb)
**Case 8 :** [Finding Similar Houses](https://github.com/zekelabs/data-science-complete-tutorial/blob/master/Project%20-%20Finding%20Similar%20Houses.ipynb)## The Free courses available on EdYoda
**Python** - https://www.edyoda.com/course/98
**Angular** - https://www.edyoda.com/course/1227
**Machine Learning** - https://www.edyoda.com/course/1416
**Dog Breed Prediction Project** - https://www.edyoda.com/course/1336
**AI Project - Web application for Object Identification** - https://www.edyoda.com/course/1185
**Numpy** - https://www.edyoda.com/course/1263
**Tensorflow** - https://www.edyoda.com/course/99
**Amazon Web Services** - https://www.edyoda.com/course/1410
**DevOps** - https://www.edyoda.com/course/100
**Android** -
https://www.edyoda.com/course/101
https://www.edyoda.com/course/1173**Deep Reinforcement Learning** - https://www.edyoda.com/course/1421
**Knowledge Graphs, Deep Learning, Reasoning** - https://www.edyoda.com/course/1420
**Natural Language Processing** - https://www.edyoda.com/course/1419
**GAN Miniseries** - https://www.edyoda.com/course/1418
**Implementing Java Api's work** - https://www.edyoda.com/channel/2398/
**Introduction to Neural Nets** - https://www.edyoda.com/channel/2500/
**Videos from deep cognition studio** - https://www.edyoda.com/channel/2380/
## About Us
We want to democratize education and create free quality course content.