Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/eesunmoon/applied_machine_learning
[COMS4995] Applied Machine Learning
https://github.com/eesunmoon/applied_machine_learning
applied-machine-learning clustering cnn data-preprocessing eda linear-regression machine-learning matplotlib neural-networks nltk-python numpy pandas pca python scikit-learn seaborn tensorflow text-classification
Last synced: 4 days ago
JSON representation
[COMS4995] Applied Machine Learning
- Host: GitHub
- URL: https://github.com/eesunmoon/applied_machine_learning
- Owner: EesunMoon
- Created: 2024-10-14T01:46:58.000Z (2 months ago)
- Default Branch: main
- Last Pushed: 2024-12-08T16:36:07.000Z (14 days ago)
- Last Synced: 2024-12-08T17:27:59.083Z (14 days ago)
- Topics: applied-machine-learning, clustering, cnn, data-preprocessing, eda, linear-regression, machine-learning, matplotlib, neural-networks, nltk-python, numpy, pandas, pca, python, scikit-learn, seaborn, tensorflow, text-classification
- Language: Jupyter Notebook
- Homepage:
- Size: 4.35 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Applied_Machine_Learning
**[Fall 2024]**## Overview
| # | Concept | Details |
|:---:|:-------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------:|
| 1 | **Exploratory Data Analysis (EDA) & Visualization** | |
| 2 | **Supervised Learning & Data Preprocessing** | |
| 3 | **Linear Regression/Classification & Support Vector Machine(SVM)** | [Logistic Regression](https://github.com/EesunMoon/Applied_Machine_Learning/blob/main/Assignment/HW1_%5Bem3907%5D.ipynb) Data Visualization and Analysis
Linear Models for Regression and Classification
Support Vector Machines |
| 4 | **Trees, Ensembles, Random Forest, Boosting** | [Ensemble Method](https://github.com/EesunMoon/Applied_Machine_Learning/blob/main/Assignment/HW2_%5Bem3907%5D.ipynb)
Decision Trees
Random Forests
Gradient Boosted Trees |
| 5 | **Model Evaluations**| |
| 6 | **Model Interpretation, Feature Selection, Dimensionality Reduction, Clustering** | |
| 7 | **Imbalanced/Sparse Data** | [Imbalanced Data](https://github.com/EesunMoon/Applied_Machine_Learning/blob/main/Assignment/HW3_%5Bem3907%5D.ipynb)
Imbalanced Data(Oversampling / Undersampling / SMOTE)
Model Prediction & Evaluation - AUC Scores / Confusion Matrix / ROC Curves |
| 8 | **Deep Neural Networks (DNN)** | |
| 9 | **Convolutional Neural Networks (CNN) & Recurrent Neural Networks (RNN)** | [Neural Networks](https://github.com/EesunMoon/Applied_Machine_Learning/blob/main/Assignment/HW4_%5Bem3907%5D.ipynb) Convolutional Neural Networks |
| 10 | **Text Data Preprocessing & Embedding** | [Text Classification](https://github.com/EesunMoon/Applied_Machine_Learning/blob/main/Assignment/HW5_%5Bem3907%5D.ipynb) Text Preprocessing (nltk) |
| 11 | **Recommender System** | |
| 12 | **ML Production** | |