Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/egarpor/goffda
Goodness-of-fit tests for functional data analysis. Software companion for "A goodness-of-fit test for the functional linear model with functional response"
https://github.com/egarpor/goffda
functional-data-analysis goodness-of-fit r reproducible-research statistics
Last synced: 3 months ago
JSON representation
Goodness-of-fit tests for functional data analysis. Software companion for "A goodness-of-fit test for the functional linear model with functional response"
- Host: GitHub
- URL: https://github.com/egarpor/goffda
- Owner: egarpor
- License: gpl-3.0
- Created: 2019-09-21T07:08:47.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2023-10-14T15:45:54.000Z (over 1 year ago)
- Last Synced: 2024-09-25T16:43:54.765Z (4 months ago)
- Topics: functional-data-analysis, goodness-of-fit, r, reproducible-research, statistics
- Language: R
- Homepage:
- Size: 5.25 MB
- Stars: 10
- Watchers: 3
- Forks: 3
- Open Issues: 1
-
Metadata Files:
- Readme: README.Rmd
- License: LICENSE.md
Awesome Lists containing this project
README
---
output:
md_document:
variant: markdown_github
---```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE, comment = "#>", fig.path = "README/README-",
message = FALSE, warning = FALSE, fig.asp = 1, fig.align = 'center'
)
```goffda
======```{r, echo = FALSE, results = 'asis'}
cat(
badger::badge_license(license = "GPLv3", color = "blue",
url = "https://www.gnu.org/licenses/gpl-3.0"),
badger::badge_github_actions(action = "R-CMD-check"),
badger::badge_cran_release(color = "green"),
badger::badge_cran_download(pkg = NULL, type = "grand-total"),
badger::badge_cran_download(pkg = NULL, type = "last-month")
)
```## Overview
Software companion for the paper "*A goodness-of-fit test for the functional linear model with functional response*" (García-Portugués, Álvarez-Liébana, Álvarez-Pérez and González-Manteiga, 2021). It implements the proposed estimators and goodness-of-fit tests for the functional linear model with scalar response. It also allows to replicate the data application presented.
## Installation
Get the released version from CRAN:
```{r, install-CRAN, eval = FALSE}
# Install the package
install.packages("goffda")# Load package
library(goffda)
```Alternatively, get the latest version from GitHub:
```{r, install-GitHub, eval = FALSE}
# Install the package
library(devtools)
install_github("egarpor/goffda")# Load package
library(goffda)
``````{r, load, echo = FALSE}
# Load package
library(goffda)
```## Usage
The following are some simple examples of the usage of the main function of the package, `flm_test`. More examples are available in `?flm_test`.
```{r, test}
# Generate data under H0
n <- 100
set.seed(987654321)
X_fdata <- r_ou(n = n, t = seq(0, 1, l = 101), sigma = 2)
epsilon <- r_ou(n = n, t = seq(0, 1, l = 101), sigma = 0.5)
Y_fdata <- epsilon# Test the FLMFR
flm_test(X = X_fdata, Y = Y_fdata, verbose = FALSE)# Simple hypothesis
flm_test(X = X_fdata, Y = Y_fdata, beta0 = 0, verbose = FALSE)# Generate data under H1
n <- 100
set.seed(987654321)
sample_frm_fr <- r_frm_fr(n = n, scenario = 3, s = seq(0, 1, l = 101),
t = seq(0, 1, l = 101), nonlinear = "quadratic")
X_fdata <- sample_frm_fr[["X_fdata"]]
Y_fdata <- sample_frm_fr[["Y_fdata"]]# Test the FLMFR
flm_test(X = X_fdata, Y = Y_fdata, verbose = FALSE)
```## AEMET temperatures data
An illustration of the test application in a real dataset.
```{r, aemet}
## Data preprocessing# Load raw data
data("aemet_temp")# Partition the dataset
with(aemet_temp, {
ind_pred <- which((1974 <= df$year) & (df$year <= 1993))
ind_resp <- which((1994 <= df$year) & (df$year <= 2013))
aemet_temp_pred <<- list("df" = df[ind_pred, ], "temp" = temp[ind_pred])
aemet_temp_resp <<- list("df" = df[ind_resp, ], "temp" = temp[ind_resp])
})# Average the temperature on each period
mean_aemet <- function(x) {
m <- tapply(X = 1:nrow(x$temp$data), INDEX = x$df$ind,
FUN = function(i) colMeans(x$temp$data[i, , drop = FALSE],
na.rm = TRUE))
x$temp$data <- do.call(rbind, m)
return(x$temp)
}# Build predictor and response fdatas
aemet_temp_pred <- mean_aemet(aemet_temp_pred)
aemet_temp_resp <- mean_aemet(aemet_temp_resp)# Average yearly temperatures
avg_year_pred <- rowMeans(aemet_temp_pred$data)
avg_year_resp <- rowMeans(aemet_temp_resp$data)# Average temperatures on both periods
plot(func_mean(aemet_temp_pred), ylim = c(5, 30),
main = "Average AEMET temperature")
plot(func_mean(aemet_temp_resp), col = 2, add = TRUE)
legend("topleft", legend = c("1974-1993", "1994-2013"), col = 1:2, lwd = 2)# Test composite and simple hypothesis
(gof <- flm_test(X = aemet_temp_pred, Y = aemet_temp_resp, B = 1e4,
verbose = FALSE, plot_dens = FALSE, plot_proc = FALSE))
beta0 <- diag(x = rep(1, length(aemet_temp_pred$argvals)))
flm_test(X = aemet_temp_pred, Y = aemet_temp_resp, verbose = FALSE,
beta0 = beta0, B = 1e4, plot_dens = FALSE, plot_proc = FALSE)# Visualize estimation
lev <- seq(-0.022, 0.022, by = 0.004)
col <- colorRampPalette(colors = c("blue", "white", "red"))
filled.contour(x = aemet_temp_pred$argvals, y = aemet_temp_resp$argvals,
z = gof$fit_flm$Beta_hat, levels = lev, color.palette = col)
```## References
García-Portugués, E., Álvarez-Liébana, J., Álvarez-Pérez, G. and González-Manteiga, W. (2021). A goodness-of-fit test for the functional linear model with functional response. *Scandinavian Journal of Statistics*, 48(2):502--528. [doi:10.1111/sjos.12486](https://doi.org/10.1111/sjos.12486)
Cuesta-Albertos, J. A., García-Portugués, E., Febrero-Bande, M. and González-Manteiga, W. (2019). Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes. *The Annals of Statistics*, 47(1):439-467. [doi:10.1214/18-AOS1693](https://doi.org/10.1214/18-AOS1693)
Febrero-Bande, M. and Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. *Journal of Statistical Software*, 51(4):1-28. [doi:10.18637/jss.v051.i04](https://doi.org/10.18637/jss.v051.i04)
García-Portugués, E., González-Manteiga, W. and Febrero-Bande, M. (2014). A goodness-of-fit test for the functional linear model with scalar response. *Journal of Computational and Graphical Statistics*, 23(3):761-778. [doi:10.1080/10618600.2013.812519](https://doi.org/10.1080/10618600.2013.812519)