Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/egarpor/shinyserver
A served-oriented repository of Shiny apps and Rmd documents
https://github.com/egarpor/shinyserver
rmd server shiny
Last synced: about 1 month ago
JSON representation
A served-oriented repository of Shiny apps and Rmd documents
- Host: GitHub
- URL: https://github.com/egarpor/shinyserver
- Owner: egarpor
- License: other
- Created: 2017-08-25T20:21:37.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2022-02-23T20:24:29.000Z (almost 3 years ago)
- Last Synced: 2024-11-13T16:42:49.474Z (2 months ago)
- Topics: rmd, server, shiny
- Language: HTML
- Homepage: https://egarpor.github.io/ShinyServer/
- Size: 49.5 MB
- Stars: 9
- Watchers: 1
- Forks: 6
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
ShinyServer
===========[![License](https://img.shields.io/badge/license-CC_BY--NC--ND_4.0-blue.svg)](https://creativecommons.org/licenses/by-nc-nd/4.0/)
## List of contents
### Shiny apps
* Simple linear regression
* [Regression coefficients, least squares and distance choice](https://shinyserv.es/shiny/least-squares)
* [Randomness of the regression line](https://shinyserv.es/shiny/lm-random)
* [Coverage of the confidence intervals](https://shinyserv.es/shiny/ci-random)
* [Confidence intervals for prediction](https://shinyserv.es/shiny/ci-prediction)
* [ANOVA decomposition](https://shinyserv.es/shiny/anova)
* [Dealing with nonlinear relationships](https://shinyserv.es/shiny/non-linear)
* Multiple linear regression
* [Least squares and distance choice](https://shinyserv.es/shiny/least-squares-3D)
* [Assumptions of the linear model](https://shinyserv.es/shiny/assump-lm-3D)
* [ANOVA decomposition](https://shinyserv.es/shiny/anova-3D)
* [Dealing with nonlinear relationships](https://shinyserv.es/shiny/mult-non-linear)
* [Linear regression, principal component analysis, and partial least squares](https://shinyserv.es/shiny/plsr)
* Logistic regression
* [Logistic curve and maximum likelihood fit](https://shinyserv.es/shiny/log-maximum-likelihood)
* [Randomness of the logistic regression curve](https://shinyserv.es/shiny/log-random)
* [Confidence intervals for prediction](https://shinyserv.es/shiny/log-ci-prediction)
* [Dealing with nonlinear relationships](https://shinyserv.es/shiny/log-non-linear)
* Nonparametric density estimation
* [Bias and variance of the moving histogram](https://shinyserv.es/shiny/bias-var-movhist/)
* [Construction of the kernel density estimator](https://shinyserv.es/shiny/kde/)
* [Bandwidth selection in kernel density estimation](https://shinyserv.es/shiny/kde-bwd/)
* [Transformation of kernel density estimator](https://shinyserv.es/shiny/kde-transf/)
* Nonparametric regression estimation
* [Construction of the local polynomial regression estimator](https://shinyserv.es/shiny/kreg/)
* [Construction of the local likelihood estimator](https://shinyserv.es/shiny/loclik/)
* Other
* [An illustration of nonparametric vs parametric estimation](https://shinyserv.es/shiny/dist-mse/)### `Rmd` documents
* [A 10 minute-ish introduction to linear regression](https://shinyserv.es/shiny/10min-lin-reg/)
## License
All the material in this repository is licensed under [CC BY-NC-ND 4.0](https://creativecommons.org/licenses/by-nc-nd/4.0/).