An open API service indexing awesome lists of open source software.

https://github.com/egorsmkv/radtts-uk

πŸ‡ΊπŸ‡¦ Ukrainian RAD-TTS++ models (decoder + models with 3 voices) and HiFiGAN model
https://github.com/egorsmkv/radtts-uk

conversational-ai hifigan speech-ai speech-synthesis text-to-speech tts ukrainian vocoder

Last synced: 8 months ago
JSON representation

πŸ‡ΊπŸ‡¦ Ukrainian RAD-TTS++ models (decoder + models with 3 voices) and HiFiGAN model

Awesome Lists containing this project

README

          

# πŸ‡ΊπŸ‡¦ Ukrainian RADTTS/RADTTS++ models and HiFiGAN model

Join our Speech Synthesis Group in Telegram: https://t.me/speech_synthesis_uk

Donate: https://send.monobank.ua/jar/3Saxixsdua

## Demo

Hugging Face space:

https://huggingface.co/spaces/Yehor/radtts-uk-demo

## Overview

This repository contains links to models:

- Decoder model for RADTTS
- Decoder model for RADTTS++
- Pretrained model for RADTTS
- Pretrained model for RADTTS++ with AGAP config
- Pretrained model for RADTTS++ with BGAP config
- Pretrained model for RADTTS++ with DAP config

Voices are from [Open Source Ukrainian Text-to-Speech datasets](https://github.com/egorsmkv/ukrainian-tts-datasets)

These models have three voices:

- Lada
- Tetiana
- Mykyta

## Demo

### Lada

https://github.com/egorsmkv/radtts-uk/assets/7875085/ee89bc98-f425-4533-9404-5124ddc8e92c

### Tetiana

https://github.com/egorsmkv/radtts-uk/assets/7875085/88d29b0d-5f78-403d-be51-765444e53950

### Mykyta

https://github.com/egorsmkv/radtts-uk/assets/7875085/96d412b1-8977-48ed-93d0-6b741d6014ba

## How to run?

Clone the repository https://github.com/egorsmkv/radtts and run the following command:

```
python inference.py -c config.json -r models/model_dap_84000.pt -v hifigan.pt -k hifigan_config.json \
-t test.txt -s lada --speaker_attributes lada --speaker_text lada -o results
```

## Download

Dropbox link to all models: https://www.dropbox.com/scl/fo/0eoipxgk16o2cnw2ymba3/h?dl=0&rlkey=7trclhuzuo6xno5n06xg4z7gd

### Acknowledgement

- Dmytro Chaplynskyi [@dchaplinsky](https://github.com/dchaplinsky): help with access to UCU's cluster
- Decoder model for RADTTS++ and Pretrained model for RADTTS++ with DAP config have been trained on the Cluster of Excellence UCU/[Lang-uk](https://github.com/lang-uk).