https://github.com/egorsmkv/speech-recognition-uk
🇺🇦 Speech Recognition & Synthesis for Ukrainian
https://github.com/egorsmkv/speech-recognition-uk
speech speech-recognition speech-synthesis speech-to-text text-to-speech tts ukrainian
Last synced: 5 months ago
JSON representation
🇺🇦 Speech Recognition & Synthesis for Ukrainian
- Host: GitHub
- URL: https://github.com/egorsmkv/speech-recognition-uk
- Owner: egorsmkv
- Created: 2020-07-06T07:32:40.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2025-05-12T22:09:23.000Z (6 months ago)
- Last Synced: 2025-05-12T23:23:04.959Z (6 months ago)
- Topics: speech, speech-recognition, speech-synthesis, speech-to-text, text-to-speech, tts, ukrainian
- Language: Python
- Homepage: https://huggingface.co/speech-uk
- Size: 2.42 MB
- Stars: 385
- Watchers: 20
- Forks: 22
- Open Issues: 7
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- Citation: CITATION.cff
Awesome Lists containing this project
README
# 🇺🇦 Speech Recognition & Synthesis for Ukrainian
## Overview
This repository collects links to models, datasets, and tools for Ukrainian **Speech-to-Text** and **Text-to-Speech**.
## Speech-UK initiative
We have datasets/models/**leaderboards** on Hugging Face, check it out:
- https://huggingface.co/speech-uk
## Community
[](https://bit.ly/discord-uds)
- Discord: https://bit.ly/discord-uds
- Speech Recognition: https://t.me/speech_recognition_uk
- Speech Synthesis: https://t.me/speech_synthesis_uk
## 🎤 Speech-to-Text
### 📦 Implementations
wav2vec2-bert
- 600M params: https://huggingface.co/Yehor/w2v-bert-uk-v2.1 (demo: https://huggingface.co/spaces/Yehor/w2v-bert-uk-v2.1-demo)
- 600M params: https://huggingface.co/Yehor/w2v-bert-uk (demo: https://huggingface.co/spaces/Yehor/w2v-bert-uk-demo)
wav2vec2
- 300M params (with language model based on Wikipedia texts): https://huggingface.co/Yehor/w2v-xls-r-uk
- 300M params: https://huggingface.co/robinhad/wav2vec2-xls-r-300m-uk
- 1B params: https://huggingface.co/arampacha/wav2vec2-xls-r-1b-uk
You can check demos out here: https://github.com/egorsmkv/wav2vec2-uk-demo
HuBERT
- hubert-uk: https://huggingface.co/Yehor/hubert-uk
Citrinet
- NVIDIA Streaming Citrinet 1024 (uk): https://huggingface.co/nvidia/stt_uk_citrinet_1024_gamma_0_25
- NVIDIA Streaming Citrinet 512 (uk): https://huggingface.co/neongeckocom/stt_uk_citrinet_512_gamma_0_25
ContextNet
- NVIDIA Streaming ContextNet 512 (uk): https://huggingface.co/theodotus/stt_uk_contextnet_512
FastConformer
- FastConformer Hybrid Transducer-CTC Large P&C: https://huggingface.co/nvidia/stt_ua_fastconformer_hybrid_large_pc
- FastConformer Hybrid Transducer-CTC Large P&C: https://huggingface.co/theodotus/stt_ua_fastconformer_hybrid_large_pc
- Demo: https://huggingface.co/spaces/theodotus/asr-uk-punctuation-capitalization
Squeezeformer
- Squeezeformer-CTC ML: https://huggingface.co/theodotus/stt_uk_squeezeformer_ctc_ml
- Demo 1: https://huggingface.co/spaces/theodotus/streaming-asr-uk
- Demo 2: https://huggingface.co/spaces/theodotus/buffered-asr-uk
- Squeezeformer-CTC SM: https://huggingface.co/theodotus/stt_uk_squeezeformer_ctc_sm
- Squeezeformer-CTC XS: https://huggingface.co/theodotus/stt_uk_squeezeformer_ctc_xs
Conformer-CTC
- https://huggingface.co/taras-sereda/uk-pods-conformer
Whisper
- official whisper: https://github.com/openai/whisper
- whisper (small, fine-tuned for Ukrainian): https://github.com/egorsmkv/whisper-ukrainian
- whisper (large, fine-tuned for Ukrainian): https://huggingface.co/arampacha/whisper-large-uk-2
- https://huggingface.co/mitchelldehaven/whisper-medium-uk
- https://huggingface.co/mitchelldehaven/whisper-large-v2-uk
Quantized variants:
- https://huggingface.co/Yehor/whisper-large-v2-quantized-uk
- https://huggingface.co/Yehor/whisper-large-v3-turbo-quantized-uk
Lite Whisper:
- https://huggingface.co/collections/efficient-speech/lite-whisper-67c0fa0e01cef6d4b9a1ab5d
OWSM, OWSM-CTC, and OWLS
- https://huggingface.co/espnet/owsm_v3.2
- https://huggingface.co/espnet/owsm_ctc_v3.2_ft_1B
- https://huggingface.co/espnet/owls_025B_180K
Flashlight
- Flashlight Conformer: https://huggingface.co/Yehor/flashlight-uk
MMS
- mms-1b-fl102: https://huggingface.co/facebook/mms-1b-fl102
data2vec
- data2vec-large: https://huggingface.co/robinhad/data2vec-large-uk
VOSK
Models: https://huggingface.co/Yehor/vosk-uk
DeepSpeech
- [DeepSpeech](https://github.com/mozilla/DeepSpeech) using transfer learning from English model: https://github.com/robinhad/voice-recognition-ua
- v0.5: https://github.com/robinhad/voice-recognition-ua/releases/tag/v0.5 (1230+ hours)
- v0.4: https://github.com/robinhad/voice-recognition-ua/releases/tag/v0.4 (1230 hours)
- v0.3: https://github.com/robinhad/voice-recognition-ua/releases/tag/v0.3 (751 hours)
M-CTC-T
- m-ctc-t-large: https://huggingface.co/speechbrain/m-ctc-t-large
### 📊 Benchmarks
This benchmark uses [Common Voice 10 test split](https://github.com/egorsmkv/cv10-uk-testset-clean).
- **WER**: Word Error Rate
- **CER**: Character Error Rate
#### `wav2vec2-bert`
| Model | WER | CER | Accuracy (words) |
|-------|-----|-----|------------|
| Yehor/w2v-bert-uk (FP16) | 6.6% | 1.34% | 93.4% |
| Yehor/w2v-bert-uk-v2.1 (FP16) | 17.34% | 3.33% | 82.66% |
#### `wav2vec2`
| Model | WER | CER | Accuracy (words) |
|-------|-----|-----|------------|
| Yehor/w2v-xls-r-uk | 20.24% | 3.64% | 79.76% |
| robinhad/wav2vec2-xls-r-300m-uk | 27.36% | 5.37% | 72.64% |
| arampacha/wav2vec2-xls-r-1b-uk | 16.52% | 2.93% | 83.48% |
#### `HuBERT`
| Model | WER | CER | Accuracy (words) |
|-------|-----|-----|-------------|
| Yehor/hubert-uk (FP16) | 37.07% | 6.87% | 62.93% |
#### `Citrinet`
| Model | WER | CER | Accuracy (words) |
|-------|-----|-----|------------|
| nvidia/stt_uk_citrinet_1024_gamma_0_25 | 4.32% | 0.94% | 95.68% |
| neongeckocom/stt_uk_citrinet_512_gamma_0_25 | 7.46% | 1.6% | 92.54% |
#### `ContextNet`
| Model | WER | CER | Accuracy (words) |
|-------|-----|-----|------------|
| theodotus/stt_uk_contextnet_512 | 6.69% | 1.45% | 93.31% |
#### `FastConformer P&C`
This model supports text punctuation and capitalization
| Model | WER | CER | Accuracy (words) |
|-------|-----|-----|------------|
| nvidia/stt_ua_fastconformer_hybrid_large_pc | 4.52% | 1% | 95.48% |
| theodotus/stt_ua_fastconformer_hybrid_large_pc | 4% | 1.02% | 96% |
#### `Squeezeformer`
| Model | WER | CER | Accuracy (words) |
|-------|-----|-----|------------|
| theodotus/stt_uk_squeezeformer_ctc_xs | 10.78% | 2.29% | 89.22% |
| theodotus/stt_uk_squeezeformer_ctc_sm | 8.2% | 1.75% | 91.8% |
| theodotus/stt_uk_squeezeformer_ctc_ml | 5.91% | 1.26% | 94.09% |
#### `Conformer-CTC`
| Model | WER | CER | Accuracy (words) |
|-------|-----|-----|------------|
| taras-sereda/uk-pods-conformer | 6.75% | 1.41% | 93.25% |
#### `Whisper`
| Model | WER | CER | Accuracy (words) |
|-------|-----|-----|------------|
| tiny | 63.08% | 18.59% | 36.92% |
| base | 52.1% | 14.08% | 47.9% |
| small | 30.57% | 7.64% | 69.43% |
| medium | 18.73% | 4.4% | 81.27% |
| large (v1) | 16.42% | 3.93% | 83.58% |
| large (v2) | 13.72% | 3.18% | 86.28% |
| large (v3) | 20.53% | 5.28% | 79.478% |
| turbo | 22.83% | 7.05% | 77.17% |
Quantized versions:
| Model | WER | CER | Accuracy (words) |
|-------|-----|-----|------------|
| Yehor/whisper-large-v2-quantized-uk | 14.95% | 4.23% | 85.05% |
| Yehor/whisper-large-v3-turbo-quantized-uk | 12.75% | 3.25% | 87.25% |
| efficient-speech/lite-whisper-large-v3-turbo | 42.89% | 12.59% | 57.11% |
| efficient-speech/lite-whisper-large-v3-turbo-acc | 17.79% | 4.34% | 82.21% |
If you want to fine-tune a Whisper model on own data, then use this repository: https://github.com/egorsmkv/whisper-ukrainian
#### `Flashlight`
| Model | WER | CER | Accuracy (words) |
|-------|-----|-----|------------|
| Flashlight Conformer | 19.15% | 2.44% | 80.85% |
#### `data2vec`
| Model | WER | CER | Accuracy (words) |
|-------|-----|-----|------------|
| robinhad/data2vec-large-uk | 31.17% | 7.31% | 68.83% |
#### `VOSK`
| Model | WER | CER | Accuracy (words) |
|-------|-----|-----|------------|
| v3 | 53.25% | 38.78% | 46.75% |
#### `m-ctc-t`
| Model | WER | CER | Accuracy (words) |
|-------|-----|-----|------------|
| speechbrain/m-ctc-t-large | 57% | 10.94% | 43% |
#### `DeepSpeech`
| Model | WER | CER | Accuracy (words) |
|-------|-----|-----|------------|
| v0.5 | 70.25% | 20.09% | 29.75% |
### 📖 Development
- [How to train own model using Kaldi][1]
- How to train a KenLM model based on Ukrainian Wikipedia data: https://github.com/egorsmkv/ukwiki-kenlm
- Export a traced JIT version of wav2vec2 models: https://github.com/egorsmkv/wav2vec2-jit
### 📚 Datasets
#### Compiled dataset: ~1200 hours
- Dataset: https://nx16725.your-storageshare.de/s/cAbcBeXtdz7znDN, use [Wget](https://www.gnu.org/software/wget) to download, downloading in a browser has speed limitations, or use [torrent file][8]
#### Voice of America: ~390 hours
- Dataset: https://huggingface.co/datasets/speech-uk/voice-of-america
#### FLEURS
- Ukrainian subset: https://huggingface.co/datasets/google/fleurs/viewer/uk_ua/train
#### Ukrainian broadcast: ~300 hours
- Ukrainian broadcast speech: https://huggingface.co/datasets/Yehor/broadcast-speech-uk
#### YODAS2: ~400 hours
- Ukrainian subsets:
- https://huggingface.co/datasets/espnet/yodas2/tree/main/data/uk000
- https://huggingface.co/datasets/espnet/yodas2/tree/main/data/uk100
#### Ukrainian podcasts
- https://huggingface.co/datasets/taras-sereda/uk-pods
#### Cleaned Common Voice 10 (test set)
- Repository: https://github.com/egorsmkv/cv10-uk-testset-clean
#### Noised Common Voice 10
- Transcriptions: https://www.dropbox.com/s/ohj3y2cq8f4207a/transcriptions.zip?dl=0
- Audio files: https://www.dropbox.com/s/v8crgclt9opbrv1/data.zip?dl=0
#### Other
- ASR Corpus created using a Telegram bot for Ukrainian: https://huggingface.co/datasets/Yehor/tg-voices-uk
- Speech Dataset with Ukrainian: https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/
- Mozilla Common Voice has the Ukrainian dataset: https://commonvoice.mozilla.org/uk/datasets
- M-AILABS Ukrainian Corpus Ukrainian: http://www.caito.de/data/Training/stt_tts/uk_UK.tgz
- Espreso TV subset: https://blog.gdeltproject.org/visual-explorer-quick-workflow-for-downloading-belarusian-russian-ukrainian-transcripts-translations/
- VoxForge Repository: http://www.repository.voxforge1.org/downloads/uk/Trunk/
### ⭐ Related works
#### Language models
- Ukrainian LMs: https://huggingface.co/Yehor/kenlm-uk
#### Inverse Text Normalization
- WFST for Ukrainian Inverse Text Normalization: https://github.com/lociko/ukraine_itn_wfst
#### Text Enhancement
- Punctuation and capitalization model: https://huggingface.co/dchaplinsky/punctuation_uk_bert (demo: https://huggingface.co/spaces/Yehor/punctuation-uk)
#### Aligners
- NeMo Forced Aligner: https://github.com/NVIDIA/NeMo/tree/main/tools/nemo_forced_aligner
- Aligner for wav2vec2-bert models: https://github.com/egorsmkv/w2v2-bert-aligner
- Aligner based on FasterWhisper (mostly for TTS): https://github.com/patriotyk/narizaka
- Aligner based on Kaldi: https://github.com/proger/uk
#### Other
- A space to calculate ASR metrics: https://huggingface.co/spaces/Yehor/evaluate-asr-outputs
- A space to see ASR outputs: https://huggingface.co/spaces/Yehor/see-asr-outputs
## 📢 Text-to-Speech
Test sentence with stresses:
```
К+ам'ян+ець-Под+ільський - м+істо в Хмельн+ицькій +області Укра+їни, ц+ентр Кам'ян+ець-Под+ільської міськ+ої об'+єднаної територі+альної гром+ади +і Кам'ян+ець-Под+ільського рай+ону.
```
Without stresses:
```
Кам'янець-Подільський - місто в Хмельницькій області України, центр Кам'янець-Подільської міської об'єднаної територіальної громади і Кам'янець-Подільського району.
```
### 📦 Implementations
StyleTTS2
- [StyleTTS2 demo & the code](https://huggingface.co/spaces/patriotyk/styletts2-ukrainian)
P-Flow TTS
- [P-Flow TTS](https://huggingface.co/spaces/patriotyk/pflowtts_ukr_demo)
https://github.com/egorsmkv/speech-recognition-uk/assets/7875085/18cfc074-f8a1-4842-90b6-9503d0bb7250
RAD-TTS
- [RAD-TTS](https://github.com/egorsmkv/ukrainian-radtts), the voice "Lada"
- [RAD-TTS with three voices](https://github.com/egorsmkv/radtts-uk), voices of Lada, Tetiana, and Mykyta
https://user-images.githubusercontent.com/7875085/206881140-bf8c09e7-5553-43d9-8807-065c36b2904b.mp4
Coqui TTS
- v1.0.0 using M-AILABS dataset: https://github.com/robinhad/ukrainian-tts/releases/tag/v1.0.0 (200,000 steps)
- v2.0.0 using Mykyta/Olena dataset: https://github.com/robinhad/ukrainian-tts/releases/tag/v2.0.0 (140,000 steps)
https://user-images.githubusercontent.com/5759207/167480982-275d8ca0-571f-4d21-b8d7-3776b3091956.mp4
Neon TTS
- [Coqui TTS](https://github.com/coqui-ai/TTS) model implemented in the [Neon Coqui TTS Python Plugin](https://pypi.org/project/neon-tts-plugin-coqui/). An interactive demo is available [on huggingface](https://huggingface.co/spaces/neongeckocom/neon-tts-plugin-coqui). This model and others can be downloaded [from huggingface](https://huggingface.co/neongeckocom) and more information can be found at [neon.ai](https://neon.ai/languages)
https://user-images.githubusercontent.com/96498856/170762023-d4b3f6d7-d756-4cb7-89de-dc50e9049b96.mp4
FastPitch
- NVIDIA FastPitch: https://huggingface.co/theodotus/tts_uk_fastpitch
Balacoon TTS
- [Balacoon TTS](https://huggingface.co/spaces/balacoon/tts), voices of Lada, Tetiana and Mykyta. [Blog post](https://balacoon.com/blog/uk_release/) on model release.
https://github.com/clementruhm/speech-recognition-uk/assets/87281103/a13493ce-a5e5-4880-8b72-42b02feeee50
MMS
- https://huggingface.co/facebook/mms-tts-ukr
### 📚 Datasets
- **Open Text-to-Speech voices for 🇺🇦 Ukrainian**: https://huggingface.co/datasets/Yehor/opentts-uk
- [Voice LADA][2], female
- [Voice TETIANA][3], female
- [Voice KATERYNA][4], female
- [Voice MYKYTA][5], male
- [Voice OLEKSA][6], male
### ⭐ Related works
#### Accentors
- https://github.com/NeonBohdan/ukrainian-accentor-transformer
- https://github.com/lang-uk/ukrainian-word-stress
- https://github.com/egorsmkv/ukrainian-accentor
#### Grapheme-to-Phoneme
ipa-uk:
- https://github.com/lang-uk/ipa-uk
- https://github.com/patriotyk/ipa-uk
Charsiu G2P:
- https://huggingface.co/charsiu/g2p_multilingual_byT5_tiny_16_layers_100
- https://huggingface.co/charsiu/g2p_multilingual_byT5_small_100
- https://huggingface.co/charsiu/g2p_multilingual_mT5_small
Other:
- https://github.com/dmort27/epitran
- https://montreal-forced-aligner.readthedocs.io/en/v1.0/pretrained_models.html
- https://huggingface.co/darkproger/ukpron
#### Misc
- Tool to make high quality text to speech (TTS) corpus from audio + text books: https://github.com/patriotyk/narizaka
- A model to do Text Normalization: https://huggingface.co/skypro1111/mbart-large-50-verbalization
- Audio Aesthetics for opentts-uk: https://huggingface.co/datasets/Yehor/opentts-uk-aesthetics
[1]: https://github.com/egorsmkv/speech-recognition-uk/tree/master/speech-to-text/vosk-model-creation
[2]: https://huggingface.co/datasets/speech-uk/opentts-lada
[3]: https://huggingface.co/datasets/speech-uk/opentts-tetiana
[4]: https://huggingface.co/datasets/speech-uk/opentts-kateryna
[5]: https://huggingface.co/datasets/speech-uk/opentts-mykyta
[6]: https://huggingface.co/datasets/speech-uk/opentts-oleksa
[8]: https://academictorrents.com/details/fcf8bb60c59e9eb583df003d54ed61776650beb8