Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ehoogeboom/emerging
https://github.com/ehoogeboom/emerging
Last synced: 2 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/ehoogeboom/emerging
- Owner: ehoogeboom
- Created: 2019-05-20T07:26:17.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2019-05-31T11:35:09.000Z (over 5 years ago)
- Last Synced: 2024-08-03T19:08:46.869Z (6 months ago)
- Language: Python
- Size: 61.5 KB
- Stars: 40
- Watchers: 4
- Forks: 6
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-normalizing-flows - [Code
README
# Emerging Convolutions for Generative Flows
Code for invertible convolutions (or deconvolutions) in deep neural networks: [paper](https://arxiv.org/abs/1901.11137), [blog](https://ehoogeboom.github.io/post/invertible_convs/).
If you use our work, please cite us:
```
Emiel Hoogeboom, Rianne van den Berg, and Max Welling. Emerging Convolutions for Generative Normalizing Flows. International Conference on Machine Learning, 2019.
```A BibTeX entry for LaTeX users is:
```
@inproceedings{
hoogeboom2019emerging,
title={Emerging Convolutions for Generative Normalizing Flows},
author={Emiel Hoogeboom and Rianne van den Berg and Max Welling},
booktitle={International conference on machine learning},
year={2019},
url={https://arxiv.org/abs/1901.11137},
}
```The source is adapted from [Glow: Generative Flow with Invertible 1x1 Convolutions](https://github.com/openai/glow)
## Requirements
- Horovod (tested with 0.15.2)
- Tensorflow (tested with 1.12)## Download datasets
CIFAR10 is automatically downloaded.
Galaxy images need to be downloaded [here](https://github.com/SpaceML/merger_transfer_learning).ImageNet 32x32 and 64x64 was downloaded from the link on the Glow github: `https://storage.googleapis.com/glow-demo/data/{dataset_name}-tfr.tar`
with `imagenet-oord` as dataset_name.##### Galaxy images results
Periodic:
```
mpiexec -n 4 python train.py --problem space --image_size 32 --n_level 2 --depth 8 --flow_permutation 5 --flow_coupling 1 --seed 2 --lr 0.001 --n_bits_x 8 --epochs 6001
```Emerging:
```
mpiexec -n 4 python train.py --problem space --image_size 32 --n_level 2 --depth 8 --flow_permutation 3 --flow_coupling 1 --seed 2 --lr 0.001 --n_bits_x 8 --epochs 6001
```Baseline (Glow):
```
mpiexec -n 4 python train.py --problem space --image_size 32 --n_level 2 --depth 8 --flow_permutation 2 --flow_coupling 1 --seed 2 --lr 0.001 --n_bits_x 8 --epochs 6001
```##### CIFAR-10 results
Emerging:
```
mpiexec -n 4 python train.py --problem cifar10 --image_size 32 --n_level 3 --depth 32 --flow_permutation 3 --flow_coupling 1 --seed 2 --learnprior --lr 0.001 --n_bits_x 8 --epochs 4001
```Baseline (Glow):
```
mpiexec -n 4 python train.py --problem cifar10 --image_size 32 --n_level 3 --depth 32 --flow_permutation 2 --flow_coupling 1 --seed 2 --learnprior --lr 0.001 --n_bits_x 8 --epochs 4001
```##### CIFAR-10 results (smaller architectures)
Replace ? with either 8 or 4, depending on the experiment.
Emerging:
```
mpiexec -n 4 python train.py --problem cifar10 --image_size 32 --n_level 3 --depth ? --flow_permutation 3 --flow_coupling 1 --seed 2 --learnprior --lr 0.001 --n_bits_x 8 --epochs 4001
```Baseline (Glow):
```
mpiexec -n 4 python train.py --problem cifar10 --image_size 32 --n_level 3 --depth ? --flow_permutation 2 --flow_coupling 1 --seed 2 --learnprior --lr 0.001 --n_bits_x 8 --epochs 4001
```##### ImageNet 32x32 results
Emerging:
```
mpiexec -n 4 python train.py --problem imagenet-oord --image_size 32 --n_level 3 --depth 48 --flow_permutation 3 --flow_coupling 1 --seed 0 --learnprior --lr 0.001 --n_bits_x 8
```Baseline (Glow):
```
mpiexec -n 4 python train.py --problem imagenet-oord --image_size 32 --n_level 3 --depth 48 --flow_permutation 2 --flow_coupling 1 --seed 0 --learnprior --lr 0.001 --n_bits_x 8
```##### ImageNet 64x64 results
Emerging:
```
mpiexec -n 4 python train.py --problem imagenet-oord --image_size 64 --n_level 4 --depth 48 --flow_permutation 3 --flow_coupling 1 --seed 0 --learnprior --lr 0.001 --n_bits_x 8
```Baseline (Glow):
```
mpiexec -n 4 python train.py --problem imagenet-oord --image_size 64 --n_level 4 --depth 48 --flow_permutation 2 --flow_coupling 1 --seed 0 --learnprior --lr 0.001 --n_bits_x 8
```##### 1x1 Convolution results
QR 1x1:
```
mpiexec -n 4 python train.py --problem cifar10 --image_size 32 --n_level 3 --depth 8 --flow_permutation 2 --flow_coupling 1 --seed 2 --learnprior --lr 0.001 --n_bits_x 8 --epochs 3501 --decomposition QR
```PLU 1x1 (Glow):
```
mpiexec -n 4 python train.py --problem cifar10 --image_size 32 --n_level 3 --depth 8 --flow_permutation 2 --flow_coupling 1 --seed 2 --learnprior --lr 0.001 --n_bits_x 8 --epochs 3501 --decomposition PLU
```Baseline 1x1 (Glow):
```
mpiexec -n 4 python train.py --problem cifar10 --image_size 32 --n_level 3 --depth 8 --flow_permutation 2 --flow_coupling 1 --seed 2 --learnprior --lr 0.001 --n_bits_x 8 --epochs 3501
```