Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ekramasif/basic-machine-learning
This is a repo of basic Machine Learning what I learn. More to go...
https://github.com/ekramasif/basic-machine-learning
ann artficial-neural-network artificial-intelligence bert-embeddings bert-model blstm collaborate data-science deep-learning embeddings keras lstm machine-learning natural-language-processing neural-network nlp pandas python seaborn tensorflow
Last synced: 10 days ago
JSON representation
This is a repo of basic Machine Learning what I learn. More to go...
- Host: GitHub
- URL: https://github.com/ekramasif/basic-machine-learning
- Owner: ekramasif
- License: mit
- Created: 2021-08-19T19:02:46.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2024-10-17T07:57:45.000Z (20 days ago)
- Last Synced: 2024-10-19T10:35:25.075Z (18 days ago)
- Topics: ann, artficial-neural-network, artificial-intelligence, bert-embeddings, bert-model, blstm, collaborate, data-science, deep-learning, embeddings, keras, lstm, machine-learning, natural-language-processing, neural-network, nlp, pandas, python, seaborn, tensorflow
- Language: Jupyter Notebook
- Homepage: https://nbviewer.org/github/ekramasif/Basic-Machine-Learning/tree/main/
- Size: 39.3 MB
- Stars: 79
- Watchers: 5
- Forks: 17
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
README
Basic Machine Learning
[![GitHub license](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/ekramasif/Basic-Machine-Learning/blob/main/LICENSE)
> - This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resources.
## Contents
- [Introduction](#general)
- [Interview Resources](#interview)
- [Artificial Intelligence](#ai)
- [Genetic Algorithms](#ga)
- [Resources on Kaggle](#kaggle)
- [Cheat Sheets](#cs)
- [Classification](#classification)
- [Linear Regression](#linear)
- [Logistic Regression](#logistic)
- [Model Validation using Resampling](#validation)
- [Cross Validation](#cross)
- [Deep Learning](#deep)
- [Frameworks](#frame)
- [Feed Forward Networks](#feed)
- [Recurrent Neural Nets, LSTM, GRU](#rnn)
- [Restricted Boltzmann Machine, DBNs](#rbm)
- [Autoencoders](#auto)
- [Convolutional Neural Nets](#cnn)
- [Graph Representation Learning](#nrl)
- [Natural Language Processing](#nlp)
- [Word2Vec](#word2vec)
- [Computer Vision](#vision)
- [Support Vector Machine](#svm)
- [Reinforcement Learning](#rl)
- [Decision Trees](#dt)
- [Random Forest / Bagging](#rf)
- [Boosting](#gbm)
- [Bayesian Machine Learning](#bayes)
- [Semi Supervised Learning](#semi)
- [Other Useful Tutorials](#other)## Introduction
- [Machine Learning Course by Andrew Ng (Stanford University)](https://www.coursera.org/learn/machine-learning)
-----
Contributing
----
Have anything in mind that you think is awesome and would fit in this list? Feel free to send me a pull request!