Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/eli-jensen/movie-poster-app
An app showing similar movie posters for popular movies
https://github.com/eli-jensen/movie-poster-app
image-similarity material-ui movie-web-app nextjs14 pinecone similarity similarity-score similarity-search tailwindcss
Last synced: about 1 month ago
JSON representation
An app showing similar movie posters for popular movies
- Host: GitHub
- URL: https://github.com/eli-jensen/movie-poster-app
- Owner: Eli-Jensen
- Created: 2024-08-22T17:25:48.000Z (4 months ago)
- Default Branch: main
- Last Pushed: 2024-09-15T00:40:39.000Z (3 months ago)
- Last Synced: 2024-09-15T07:16:48.340Z (3 months ago)
- Topics: image-similarity, material-ui, movie-web-app, nextjs14, pinecone, similarity, similarity-score, similarity-search, tailwindcss
- Language: TypeScript
- Homepage: https://movie-poster-app.vercel.app
- Size: 18.1 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
## Movie Poster Similarity App
https://movie-poster-app.vercel.app/
Shows similar movie posters for popular movies (sourced from [TMDB](https://developer.themoviedb.org/reference/movie-popular-list) in August 2024).
Allows the user to compare the movie poster image embedding results of three different models ([CLIP](https://huggingface.co/openai/clip-vit-base-patch32), [ResNet-50](https://huggingface.co/microsoft/resnet-50), [VGG16](https://huggingface.co/timm/vgg16.tv_in1k)).
## Demo
![Demo of website](https://github.com/Eli-Jensen/movie-poster-app/blob/main/public/movie_site_demo.gif)## Technologies used
* [Next.js 14](https://nextjs.org/) with TypeScript
* [Pinecone](https://www.pinecone.io/) vector database
* [Material UI](https://mui.com/) component library
* [Tailwind CSS](https://tailwindcss.com/) for styling/layout
* [Zustand](https://github.com/pmndrs/zustand) for state managementhttps://github.com/Eli-Jensen/movie-poster-model shows how Pinecone indices were created/populated