Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/eliasbnk/scrapethissite-simple

Countries of the World: A Simple Example - Walkthrough
https://github.com/eliasbnk/scrapethissite-simple

beautifulsoup python requests webscraping

Last synced: 2 months ago
JSON representation

Countries of the World: A Simple Example - Walkthrough

Awesome Lists containing this project

README

        

# Countries of the World: A Simple Example - Walkthrough
> walkthrough for the web-scrapping exercise found on https://www.scrapethissite.com
## Step 0: Install necessary dependencies
### - Step 0.1: Create a virtual environment:
```bash
python -m venv venv
```

### - Step 0.2: Activate the virtual environment:

***Windows***:
```bash
venv\Scripts\activate
```

***Mac/Linux***:
```bash
source venv/bin/activate
```
### - Step 0.3: Install dependencies:
```bash
pip install requests beautifulsoup4
```
* * *
## Step 1: Get the Webpage HTML
Start by fetching the HTML content of the target webpage. We'll use the `requests` library to do this.

```python
import requests

# Define the URL of the webpage
url = 'https://www.scrapethissite.com/pages/simple/'

# Send a GET request to fetch the webpage content
response = requests.get(url)

# Extract the HTML content from the response
html_content = response.text
```
* * *
## Step 2: Spot HTML Patterns

Inspect the HTML structure for any recurring patterns. It appears that each country's data is contained within `

` elements having the class ``"country"``.

```html




Afghanistan



Capital: Kabul

Population: 29,121,286

Area (km2): 647,500.0





Anguilla



Capital: The Valley

Population: 13,254

Area (km2): 102.0


```
* * *
## Step 3: Parse the HTML

We'll use ``BeautifulSoup``, to parse the HTML content and make it ready for extraction.

```python
from bs4 import BeautifulSoup

# Parse the HTML content
soup = BeautifulSoup(html_content, 'html.parser')
```
* * *
## Step 4: Extract the Data

Having identified the pattern, we can gather all `

` elements with the class ``"country"`` as individual datasets. Then, we'll loop through each dataset and extract details like country name, capital, population, and area.

```python
# Find all

elements with the class "country"
country_divs = soup.select('div.country')

# Iterate through each

element for data extraction
for country_div in country_divs:

# Extract country name
country_name = country_div.select_one('h3.country-name')

# gets:

#


#
# Andorra
#

# We only need the text:

country_name = country_name.text

# returns:

# Andorra

# But with extra whitespace

# We can remove the extra whitespace:

country_name = country_name.strip()

# returns:

# Andorra

# Without any extra whitespace

# We can achieve clean text extraction in a single line by appending the .text.strip() methods.
# For example, to extract the country capital, we can write:

# Extract country capital
country_capital = country_div.select_one('span.country-capital').text.strip()

# This line not only selects the country capital element but also extracts its text content
# and removes any leading or trailing whitespace, ensuring clean and properly formatted data.

# Extract country population
country_population = country_div.select_one('span.country-population').text.strip()

# Extract country area
country_area = country_div.select_one('span.country-area').text.strip()
```

* * *
### Put it all together:
```python
import json # optional, added for output formating
import requests
from bs4 import BeautifulSoup

url = 'https://www.scrapethissite.com/pages/simple/'

response = requests.get(url)

html_content = response.text

soup = BeautifulSoup(html_content, 'html.parser')

country_divs = soup.select('div.country')

country_data = []

# note [:5], only will extract first 5 countries
for country_div in country_divs[:5]:

country_name = country_div.select_one('h3.country-name').text.strip()
country_capital = country_div.select_one('span.country-capital').text.strip()
country_population = country_div.select_one('span.country-population').text.strip()
country_area = country_div.select_one('span.country-area').text.strip()

country_data.append({
'country_name': country_name,
'country_capital': country_capital,
'country_population': country_population,
'country_area': country_area
})

# you can just do:
# print(country_data)

# but this will output the country_data, with indentation
print(json.dumps(country_data, indent=4))

```
### Outputs:
```json
[
{
"country_name": "Andorra",
"country_capital": "Andorra la Vella",
"country_population": "84000",
"country_area": "468.0"
},
{
"country_name": "United Arab Emirates",
"country_capital": "Abu Dhabi",
"country_population": "4975593",
"country_area": "82880.0"
},
{
"country_name": "Afghanistan",
"country_capital": "Kabul",
"country_population": "29121286",
"country_area": "647500.0"
},
{
"country_name": "Antigua and Barbuda",
"country_capital": "St. John's",
"country_population": "86754",
"country_area": "443.0"
},
{
"country_name": "Anguilla",
"country_capital": "The Valley",
"country_population": "13254",
"country_area": "102.0"
}
]
```