Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/elifgokpinar/deepfillv2-test-images-guide
Test stages of Gated Convolution (DeepFillv2) inpainting method is explained.
https://github.com/elifgokpinar/deepfillv2-test-images-guide
deepfillv2 gated-convolution inpainting python test
Last synced: about 2 months ago
JSON representation
Test stages of Gated Convolution (DeepFillv2) inpainting method is explained.
- Host: GitHub
- URL: https://github.com/elifgokpinar/deepfillv2-test-images-guide
- Owner: elifgokpinar
- Created: 2022-04-06T08:29:21.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2023-07-22T10:18:37.000Z (over 1 year ago)
- Last Synced: 2023-07-22T10:26:48.742Z (over 1 year ago)
- Topics: deepfillv2, gated-convolution, inpainting, python, test
- Language: Python
- Homepage:
- Size: 537 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# DeepFillv2 Test Images Guide
Test stages of Gated Convolution (DeepFillv2) inpainting method are explained.[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/18C2dZjzv7ap_2WVtJUp2ZXfIdP2Jq8u2?usp=sharing)
Requirements
- Install python3.
- Install tensorflow (tested on Release 1.3.0, 1.4.0, 1.5.0, 1.6.0, 1.7.0).
I used Python 3.7, Tensorflow 1.15, CUDA 10
Test Stages
- Install software requirements
- Clone the deepfillv2 github project on your computer =
git clone https://github.com/JiahuiYu/generative_inpainting
- Install tensorflow toolkit neuralgym (run
pip install git+https://github.com/JiahuiYu/neuralgym
) - Generate masked images (link). I used NVIDIA Irregular Mask Dataset: Testing Set.
- Generate test commands file (link). (The system takes 2 inputs to test : masked image and mask image. Pay attention the masked image and mask image paths while generating test command file.)
- Run the commands file in your computer.
Examples
![masked_image_9](https://user-images.githubusercontent.com/72789565/164889078-d2cd42cc-7d0f-4242-bf0d-7945684ba018.png) ![9](https://user-images.githubusercontent.com/72789565/164889111-12275eb9-dbc3-47ce-8f40-a5f595428a63.png) ![00008](https://user-images.githubusercontent.com/72789565/164889148-56e87c38-7624-4465-ba5a-d50481601d6c.png)
![masked_image_6](https://user-images.githubusercontent.com/72789565/164889315-9eb7f384-980f-47a6-9152-c95775c5b970.png)
![6](https://user-images.githubusercontent.com/72789565/164889285-de209c5b-1f08-410b-bdde-8a3577a7ef58.png)
![00005](https://user-images.githubusercontent.com/72789565/164889274-fa781ab0-a7a0-4363-b073-949f03686c05.png)
From celeba_hq dataset. First column shows masked image, second column shows mask image and third column shows inpainting result.
## Citing
```
@article{yu2018generative,
title={Generative Image Inpainting with Contextual Attention},
author={Yu, Jiahui and Lin, Zhe and Yang, Jimei and Shen, Xiaohui and Lu, Xin and Huang, Thomas S},
journal={arXiv preprint arXiv:1801.07892},
year={2018}
}
@article{yu2018free,
title={Free-Form Image Inpainting with Gated Convolution},
author={Yu, Jiahui and Lin, Zhe and Yang, Jimei and Shen, Xiaohui and Lu, Xin and Huang, Thomas S},
journal={arXiv preprint arXiv:1806.03589},
year={2018}
}
```