Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/elisim/piven

Official implementation of the paper "PIVEN: A Deep Neural Network for Prediction Intervals with Specific Value Prediction" by Eli Simhayev, Gilad Katz and Lior Rokach.
https://github.com/elisim/piven

deep-learning prediction-intervals regression tensorflow uncertainty-estimation

Last synced: 2 months ago
JSON representation

Official implementation of the paper "PIVEN: A Deep Neural Network for Prediction Intervals with Specific Value Prediction" by Eli Simhayev, Gilad Katz and Lior Rokach.

Awesome Lists containing this project

README

        

# PIVEN: A Deep Neural Network for Prediction Intervals with Specific Value Prediction

The official implementation of the paper ["PIVEN: A Deep Neural Network for Prediction Intervals with Specific Value Prediction"](https://arxiv.org/abs/2006.05139)
by Eli Simhayev, Gilad Katz and Lior Rokach.

## Update 21.6.22
Our paper has been accepted to Knowledge Based Systems 🙂

https://doi.org/10.1016/j.knosys.2022.108685

 
![The PIVEN schematic architecture](piven_architecture.jpg)

## TL;DR
A neural network with a PIVEN output layer returns a point prediction as well as a lower and upper prediction interval (PI) for each target in a regression problem. The image below shows how the lower and upper PI change as we keep training the model:



We thank Jasper Ginn (@JasperHG90) from GoDataDriven ([godatadriven/piven](https://github.com/godatadriven/piven)) for the image 🙂

## Quickstart in Google Colab

A simple fast colab demo using Keras is included in [PIVEN_Demo.ipynb](https://colab.research.google.com/github/elisim/piven/blob/master/PIVEN_Demo.ipynb).

## Contents
```
├── age
│   ├── Bone age ground truth.xlsx --- RSNA Bong Age Ground-Truth
│   ├── get_age_data.sh --- Download dataset from kaggle
│   ├── main.py --- Run bone age experiment
├── imdb
│   ├── densenet.py
│   ├── generators.py
│   ├── get_imdb_data.sh --- Download dataset
│   ├── imdb_create_db.py --- Run after downloading the dataset
│   ├── main.py --- Run imdb age estimation experiment
│   ├── model.py
│   ├── subpixel.py
│   ├── tensorflow_backend.py
│   ├── train_callbacks.py
│   └── utils.py
└── uci
├── code
│   ├── DataGen.py
│   ├── DeepNetPI.py
│  ├── alpha_experiment.py --- Run alpha experiment on UCI
│   ├── main.py --- Run UCI experiments
│   ├── params_deep_ens.json --- deep ensembles hyperparameters
│   ├── params.json --- piven and qd hyperparameters
│   └── utils.py
├── get_song_dataset.sh --- Download Year Prediction MSD dataset
└── UCI_Datasets
```

## Requirements
* pandas==0.25.2
* numpy==1.18.1
* matplotlib==3.0.3
* tensorflow==1.15.0
* keras==2.3.1
* xlrd==1.2.0
* scikit-learn==0.22
* tqdm==4.45.0
* opencv-python==4.2.0.34

To install requirements:

```setup
pip install -r requirements.txt
```

All experiments tested on Ubuntu 18.04 with Python 3.6.

## Acknowledgements

Our UCI experiments were inspired by Tim Pearce's implementation of [High-Quality Prediction Intervals for Deep Learning:
A Distribution-Free, Ensembled Approach](https://github.com/TeaPearce/Deep_Learning_Prediction_Intervals). Moreover, in
IMDB age estimation experiment we used the preprocessing implemented in
[SSR-Net: A Compact Soft Stagewise Regression Network for Age Estimation](https://github.com/shamangary/SSR-Net).

## Citing PIVEN
If you use PIVEN in your research please use the following BibTeX entry:

```BibTeX
@article{simhayev2022integrated,
title={Integrated prediction intervals and specific value predictions for regression problems using neural networks},
author={Simhayev, Eli and Katz, Gilad and Rokach, Lior},
journal={Knowledge-Based Systems},
volume={247},
pages={108685},
year={2022},
publisher={Elsevier}
}
```