Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/elprofesoriqo/ml-optimizer

Python library designed to revolutionize machine learning workflows by automating data preprocessing, tensor optimization, and model selection.
https://github.com/elprofesoriqo/ml-optimizer

api-rest cuda imagesearch machine-learning machine-learning-algorithms numpy-arrays python pytorch tensor

Last synced: 10 days ago
JSON representation

Python library designed to revolutionize machine learning workflows by automating data preprocessing, tensor optimization, and model selection.

Awesome Lists containing this project

README

        

# ML Optimizer: Intelligent Data Processing and Machine Learning Model Optimizer

## 🚀 Project Overview
ML Optimizer is an innovative Python library designed to revolutionize machine learning workflows by automating data preprocessing, tensor optimization, and model selection.

## 🎯 Key Features
- **Universal Data Processing**: Supports multiple input formats
- **Intelligent Tensor Compression**: Advanced compression techniques
- **Adaptive Model Selection**: Automatic model architecture recommendation
- **Performance Optimization**: Resource-efficient machine learning pipeline

## 📦 Installation
```bash
# Clone the repository
git clone https://github.com/your-username/ml-optimizer.git

# Install dependencies
pip install -r requirements.txt

# Install the package
pip install .

from ml_optimizer import MLOptimizer

# Load your data from any source
data = load_your_data() # Supports various input types

# Initialize the optimizer
optimizer = MLOptimizer(verbose=True)

# Automatic data and model optimization
result = optimizer.optimize_pipeline(data)

# Analyze performance
optimizer.analyze_performance(result)
```

🛠 Quick Start
```bash

pythonCopyfrom ml_optimizer import MLOptimizer

# Load your data from any source
data = load_your_data() # Supports various input types

# Initialize the optimizer
optimizer = MLOptimizer(verbose=True)

# Automatic data and model optimization
result = optimizer.optimize_pipeline(data)

# Analyze performance
optimizer.analyze_performance(result)

```

# 🧠 Core Components

## 1. Data Processing Module
- Supports multiple input formats
- Automatic data normalization
- Multi-layer data validation

## 2. Tensor Compression Module
- Quantization techniques
- Dimensionality reduction
- Irrelevant feature elimination

## 3. Model Selection Module
- Architecture selection heuristics
- Adaptive hyperparameter tuning
- Data characteristic analysis

# 🔍 Supported Input Types
- PyTorch Tensors
- NumPy Arrays
- CSV files
- JSON
- Image files
- Audio data
- Sequential data

# 🖥 System Requirements
- **Python** 3.9+
- **PyTorch** 1.10+
- Minimum 8 GB RAM
- Optional: CUDA-enabled GPU

# 📊 Performance Metrics
The library aims to:
- Reduce data preprocessing time by up to 50%
- Minimize computational resource usage
- Improve model selection accuracy

# 💡 Future Enhancements
- Federated learning support
- Cloud ML service integration
- Automated hyperparameter optimization
- Web visualization interface

# 🌟 Support
If you find this project useful, please consider:
- ⭐ Starring the repository
- 🍴 Forking the project
- 💡 Contributing to the development