Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/eltonlaw/impyute
Data imputations library to preprocess datasets with missing data
https://github.com/eltonlaw/impyute
imputation missing-data python scientific-computing
Last synced: 4 days ago
JSON representation
Data imputations library to preprocess datasets with missing data
- Host: GitHub
- URL: https://github.com/eltonlaw/impyute
- Owner: eltonlaw
- License: mit
- Created: 2017-01-21T09:16:27.000Z (almost 8 years ago)
- Default Branch: master
- Last Pushed: 2021-11-06T21:15:04.000Z (about 3 years ago)
- Last Synced: 2024-10-02T07:21:13.010Z (about 1 month ago)
- Topics: imputation, missing-data, python, scientific-computing
- Language: Python
- Homepage: http://impyute.readthedocs.io/
- Size: 2.43 MB
- Stars: 352
- Watchers: 11
- Forks: 49
- Open Issues: 30
-
Metadata Files:
- Readme: README.rst
- Changelog: CHANGELOG.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
- awesome-meteo - Impyute
- awesome-python-machine-learning - impyute - Impyute is a library of missing data imputation algorithms. (Uncategorized / Uncategorized)
- awesome-python-machine-learning-resources - GitHub - 42% open · ⏱️ 06.11.2021): (Others)
README
.. image:: https://travis-ci.org/eltonlaw/impyute.svg?branch=master
:target: https://travis-ci.org/eltonlaw/impyute.. image:: https://img.shields.io/pypi/v/impyute.svg
:target: https://pypi.python.org/pypi/impyuteImpyute
========Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do.
.. code-block:: python
>>> n = 5
>>> arr = np.random.uniform(high=6, size=(n, n))
>>> for _ in range(3):
>>> arr[np.random.randint(n), np.random.randint(n)] = np.nan
>>> print(arr)
array([[0.25288643, 1.8149261 , 4.79943748, 0.54464834, np.nan],
[4.44798362, 0.93518716, 3.24430922, 2.50915032, 5.75956805],
[0.79802036, np.nan, 0.51729349, 5.06533123, 3.70669172],
[1.30848217, 2.08386584, 2.29894541, np.nan, 3.38661392],
[2.70989501, 3.13116687, 0.25851597, 4.24064355, 1.99607231]])
>>> import impyute as impy
>>> print(impy.mean(arr))
array([[0.25288643, 1.8149261 , 4.79943748, 0.54464834, 3.7122365],
[4.44798362, 0.93518716, 3.24430922, 2.50915032, 5.75956805],
[0.79802036, 1.99128649, 0.51729349, 5.06533123, 3.70669172],
[1.30848217, 2.08386584, 2.29894541, 3.08994336, 3.38661392],
[2.70989501, 3.13116687, 0.25851597, 4.24064355, 1.99607231]])Feature Support
---------------* Imputation of Cross Sectional Data
* K-Nearest Neighbours
* Multivariate Imputation by Chained Equations
* Expectation Maximization
* Mean Imputation
* Mode Imputation
* Median Imputation
* Random Imputation
* Imputation of Time Series Data
* Last Observation Carried Forward
* Moving Window
* Autoregressive Integrated Moving Average (WIP)
* Diagnostic Tools
* Loggers
* Distribution of Null Values
* Comparison of imputations
* Little's MCAR Test (WIP)Versions
--------Currently tested on 2.7, 3.4, 3.5, 3.6 and 3.7
Installation
------------To install impyute, run the following:
.. code-block:: bash
$ pip install impyute
Or to get the most current version:
.. code-block:: bash
$ git clone https://github.com/eltonlaw/impyute
$ cd impyute
$ python setup.py installDocumentation
-------------Documentation is available here: http://impyute.readthedocs.io/
How to Contribute
-----------------Check out CONTRIBUTING_
.. _CONTRIBUTING: https://github.com/eltonlaw/impyute/blob/master/CONTRIBUTING.md