Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/eltonlaw/impyute

Data imputations library to preprocess datasets with missing data
https://github.com/eltonlaw/impyute

imputation missing-data python scientific-computing

Last synced: 4 days ago
JSON representation

Data imputations library to preprocess datasets with missing data

Awesome Lists containing this project

README

        

.. image:: https://travis-ci.org/eltonlaw/impyute.svg?branch=master
:target: https://travis-ci.org/eltonlaw/impyute

.. image:: https://img.shields.io/pypi/v/impyute.svg
:target: https://pypi.python.org/pypi/impyute

Impyute
========

Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do.

.. code-block:: python

>>> n = 5
>>> arr = np.random.uniform(high=6, size=(n, n))
>>> for _ in range(3):
>>> arr[np.random.randint(n), np.random.randint(n)] = np.nan
>>> print(arr)
array([[0.25288643, 1.8149261 , 4.79943748, 0.54464834, np.nan],
[4.44798362, 0.93518716, 3.24430922, 2.50915032, 5.75956805],
[0.79802036, np.nan, 0.51729349, 5.06533123, 3.70669172],
[1.30848217, 2.08386584, 2.29894541, np.nan, 3.38661392],
[2.70989501, 3.13116687, 0.25851597, 4.24064355, 1.99607231]])
>>> import impyute as impy
>>> print(impy.mean(arr))
array([[0.25288643, 1.8149261 , 4.79943748, 0.54464834, 3.7122365],
[4.44798362, 0.93518716, 3.24430922, 2.50915032, 5.75956805],
[0.79802036, 1.99128649, 0.51729349, 5.06533123, 3.70669172],
[1.30848217, 2.08386584, 2.29894541, 3.08994336, 3.38661392],
[2.70989501, 3.13116687, 0.25851597, 4.24064355, 1.99607231]])

Feature Support
---------------

* Imputation of Cross Sectional Data
* K-Nearest Neighbours
* Multivariate Imputation by Chained Equations
* Expectation Maximization
* Mean Imputation
* Mode Imputation
* Median Imputation
* Random Imputation
* Imputation of Time Series Data
* Last Observation Carried Forward
* Moving Window
* Autoregressive Integrated Moving Average (WIP)
* Diagnostic Tools
* Loggers
* Distribution of Null Values
* Comparison of imputations
* Little's MCAR Test (WIP)

Versions
--------

Currently tested on 2.7, 3.4, 3.5, 3.6 and 3.7

Installation
------------

To install impyute, run the following:

.. code-block:: bash

$ pip install impyute

Or to get the most current version:

.. code-block:: bash

$ git clone https://github.com/eltonlaw/impyute
$ cd impyute
$ python setup.py install

Documentation
-------------

Documentation is available here: http://impyute.readthedocs.io/

How to Contribute
-----------------

Check out CONTRIBUTING_

.. _CONTRIBUTING: https://github.com/eltonlaw/impyute/blob/master/CONTRIBUTING.md