An open API service indexing awesome lists of open source software.

https://github.com/emanuelhuber/blp

Bayesian Learning Potential
https://github.com/emanuelhuber/blp

Last synced: 3 months ago
JSON representation

Bayesian Learning Potential

Awesome Lists containing this project

README

        

# Bayesian Learning Potential

bibliography: http://andrius.velykis.lt/2012/06/master-bibtex-file-git-submodules/

https://gist.github.com/201827a159120cb808ced9d43bc30ac6.git

## Distances

Check:
- https://statistik.econ.kit.edu/download/doc_secure1/3_StochModels.pdf

How do the distances reacts? -> https://www.datadoghq.com/blog/engineering/robust-statistical-distances-for-machine-learning/#cramrvon-mises-distance

http://www.stat.cmu.edu/~larry/=sml/Opt.pdf

### Kolmogorov distance

https://stackoverflow.com/a/54138339

### 1-Wasserstein distance

https://stats.stackexchange.com/a/299391

∫∞x=−∞|F(x)−G(x)|dx,

## Check

http://zevross.com/blog/2017/06/19/tips-and-tricks-for-working-with-images-and-figures-in-r-markdown-documents/

- [ ] Distance between CDF
- [ ] convergence analysis
- [ ] Measure of reliability of the distance (p-value?)
- [ ] Clustering
- [ ] Basic example
- [ ] Hydrogeological example
- [ ] Multi-dimensional CDF - how to do?

## Basic examples

https://www.sciencedirect.com/science/article/pii/S1364815215000237#fd9

### Ishigami–Homma function
(Eq. (4.34) in Saltelli et al. (2008))

y = sin(x1) + a sin(x2)2 + b x34 sin(x1)

where all xi follow a uniform distribution over [-pi, pi], and a = 2 and b = 1.