An open API service indexing awesome lists of open source software.

https://github.com/emi-group/evomo

EvoMO is a GPU-accelerated library for evolutionary multiobjective optimization (EMO)
https://github.com/emi-group/evomo

evolutionary-algorithms evolutionary-computation gpu-acceleration gpu-computing multiobjective-optimization pytorch

Last synced: about 9 hours ago
JSON representation

EvoMO is a GPU-accelerated library for evolutionary multiobjective optimization (EMO)

Awesome Lists containing this project

README

          






EvoX Logo





🌟 EvoMO: Bridging Evolutionary Multiobjective Optimization and GPU Acceleration via Tensorization 🌟



EvoMO Paper on arXiv

## Table of Contents

1. [Overview](#Overview)
2. [Key Features](#key-features)
3. [Installation Guide](#installation-guide)
4. [Examples](#examples)
5. [Publications on EvoMO](#publications-on-evomo)
6. [Community & Support](#community--support)
7. [Citing](#Citing-evomo)
8. [Contributors](#Contributors)

## Overview

EvoMO is a GPU-accelerated library for evolutionary multiobjective optimization (EMO) that leverages advanced tensorization techniques. By transforming key data structures and operations into tensor representations, EvoMO enables more efficient mathematical modeling and delivers significant performance improvements. Designed with scalability in mind, EvoMO can efficiently handle large populations and complex optimization tasks. Additionally, EvoMO includes MoRobtrol, a multiobjective robot control benchmark suite, providing a platform for testing tensorized EMO algorithms in real-world, black-box environments. EvoMO is a sister project of [EvoX](https://github.com/EMI-Group/evox).

> [!NOTE]
> To use the JAX version of EvoMO, you can switch to the `v0.0.1-dev` branch. This branch is fully compatible with EvoX version 0.9.0.
>
## Key Features

### 💻 High-Performance Computing

#### 🚀 General Tensorization Methodology
- **EvoMO** adopts a unified tensorization approach, restructuring EMO algorithms into tensor representations, enabling efficient GPU acceleration.

#### ⚡ Ultra Performance
- Supports tensorized implementations of **NSGA-II**, **NSGA-III**, **MOEA/D**, **RVEA**, **HypE**, and more, achieving up to **1113× speedup** while preserving solution quality.

#### 📈 Scalability
- Handles large populations, scaling to hundreds of thousands for complex optimization tasks, ensuring scalability for real-world applications.

### 📊 Benchmarking

#### 🤖 MoRobtrol Benchmark
- Includes **MoRobtrol**, a multiobjective robot control benchmark, for testing tensorized EMO algorithms in challenging black-box environments.

### 🔧 Easy-to-Use Integration

#### 📦 Standalone EvoMO Package
- EvoMO is now available as an independent repository, allowing users to easily access multiobjective optimization algorithms and benchmark problems via `import evomo` for improved discoverability and usability.

## Installation Guide

To install EvoMO, you need to install EvoX first.

1. Install EvoX:

```bash
pip install evox
```


2. Install EvoMO:

```bash
pip install evomo
```

For the latest development version, you can install from the source:

```bash
git clone https://github.com/EMI-Group/evomo.git
cd evomo
pip install -e.
```

## Examples

### Numerical optimization problem

Solve the DTLZ2 problem using the TensorMOEA/D algorithm:

```python
import time

import torch
from evox.metrics import igd
from evox.problems.numerical import DTLZ2
from evox.workflows import StdWorkflow

from evomo.algorithms import TensorMOEAD

if __name__ == "__main__":
torch.set_default_device("cuda" if torch.cuda.is_available() else "cpu")

algo = TensorMOEAD(pop_size=100, n_objs=3, lb=-torch.zeros(12), ub=torch.ones(12))
prob = DTLZ2(m=3)
pf = prob.pf()
workflow = StdWorkflow(algo, prob)
workflow.init_step()
jit_state_step = workflow.step

t = time.time()
for i in range(100):
print(i)
jit_state_step()
fit = workflow.algorithm.fit
fit = fit[~torch.any(torch.isnan(fit), dim=1)]
print(f"Generation {i + 1} IGD: {igd(fit, pf)}")

print(f"Total time: {time.time() - t} seconds")
```

> [!NOTE]
> **For Windows users**: If you encounter `FileNotFoundError: [Error 2] No such file or directory: 'C:\\Users\\...'`, it may be caused by the system path length limitation.
> Please enable long path support to resolve this issue.

### MoRobtrol

Solve the MoSwimmer problem in MoRobtrol using the TensorMOEA/D algorithm:

```python
import time

import torch
import torch.nn as nn
from evox.utils import ParamsAndVector
from evox.workflows import EvalMonitor, StdWorkflow

from evomo.algorithms import TensorMOEAD
from evomo.problems.neuroevolution import MoRobtrol

class SimpleMLP(nn.Module):
def __init__(self):
super(SimpleMLP, self).__init__()
self.features = nn.Sequential(nn.Linear(8, 4), nn.Tanh(), nn.Linear(4, 2))

def forward(self, x):
return torch.tanh(self.features(x))

def setup_workflow(model, pop_size, max_episode_length, num_episodes, device):
adapter = ParamsAndVector(dummy_model=model)
model_params = dict(model.named_parameters())
pop_center = adapter.to_vector(model_params)
lower_bound = torch.full_like(pop_center, -5)
upper_bound = torch.full_like(pop_center, 5)

problem = MoRobtrol(
policy=model,
env_name="mo_swimmer",
max_episode_length=max_episode_length,
num_episodes=num_episodes,
pop_size=pop_size,
device=device,
num_obj=2,
observation_shape=8,
obs_norm=torch.tensor([5.0, 1e-6, 1e6], device=device),
)

algorithm = TensorMOEAD(
pop_size=pop_size, lb=lower_bound, ub=upper_bound, n_objs=2, device=device
)
monitor = EvalMonitor(device=device)

workflow = StdWorkflow(
algorithm=algorithm,
problem=problem,
monitor=monitor,
opt_direction="max",
solution_transform=adapter,
device=device,
)
return workflow

def run_workflow(workflow, compiled=False, generations=10):
workflow.init_step()
step_function = torch.compile(workflow.step) if compiled else workflow.step
for index in range(generations):
print(f"In generation {index}:")
t = time.time()
step_function()
print(f"\tFitness: {-workflow.algorithm.fit}.")
print(f"\tTime elapsed: {time.time() - t: .4f}(s).")

if __name__ == "__main__":
device = "cuda" if torch.cuda.is_available() else "cpu"

model = SimpleMLP().to(device)
workflow = setup_workflow(model, 12, 100, 2, device)
run_workflow(workflow)

```

## Publications on EvoMO
- Hao Li, Zhenyu Liang, and Ran Cheng, “GPU-accelerated evolutionary many-objective optimization using tensorized NSGA-III,” in *IEEE
Congress on Evolutionary Computation*, 2025. [[📄 Paper](https://arxiv.org/abs/2504.06067)] | [[🧐 Read More](docs/papers/tensornsga3_cec25.md)]
- Zhenyu Liang, Tao Jiang, Kebin Sun, and Ran Cheng, “GPU-accelerated evolutionary multiobjective optimization using tensorized RVEA,” in *Proceedings of the Genetic and Evolutionary Computation Conference*, 2024, pp. 566–575. [[📄 Paper](https://arxiv.org/abs/2404.01159)] | [[🧐 Read More](https://github.com/EMI-Group/tensorrvea)]

## Community & Support

We welcome contributions and look forward to your feedback!
- Engage in discussions and share your experiences on [GitHub Issues](https://github.com/EMI-Group/evomo/issues).
- Join our QQ group (ID: 297969717).

## Citing EvoMO

If you use EvoMO in your research and want to cite it in your work, please use:
```
@article{evomo,
title = {Bridging Evolutionary Multiobjective Optimization and {GPU} Acceleration via Tensorization},
author = {Liang, Zhenyu and Li, Hao and Yu, Naiwei and Sun, Kebin and Cheng, Ran},
journal = {IEEE Transactions on Evolutionary Computation},
year = 2025,
doi = {10.1109/TEVC.2025.3555605}
}
```

## Contributors

Thanks to the following people who contributed to this project: [Zhenyu2Liang](https://github.com/Zhenyu2Liang), [Nam-dada](https://github.com/Nam-dada), [LiHao-MS](https://github.com/LiHao-MS), [XU-Boqing](https://github.com/XU-Boqing), [sherry-zx](https://github.com/sherry-zx), [BillHuang2001](https://github.com/BillHuang2001), [ranchengcn](https://github.com/ranchengcn).