Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/encoding-ninja/per-title-analysis
Analysis provider for adapting your OTT bitrate ladder
https://github.com/encoding-ninja/per-title-analysis
encoding optimization per-title video video-encoding video-quality
Last synced: 21 days ago
JSON representation
Analysis provider for adapting your OTT bitrate ladder
- Host: GitHub
- URL: https://github.com/encoding-ninja/per-title-analysis
- Owner: encoding-ninja
- License: mit
- Created: 2017-12-22T14:47:23.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2022-11-14T14:14:08.000Z (about 2 years ago)
- Last Synced: 2024-09-20T14:30:57.998Z (4 months ago)
- Topics: encoding, optimization, per-title, video, video-encoding, video-quality
- Language: Python
- Size: 32.2 KB
- Stars: 56
- Watchers: 6
- Forks: 19
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Per-Title Analysis
*This a python package providing tools for optimizing your over-the-top bitrate ladder per each video you need to encode.*## How does it work?
You can configure a template encoding ladder with constraints (min/max bitrate) that will be respected for the output optimal ladder.
You also have the control over analysis parameters (based on CRF encoding or multiple bitrate encodings with video quality metric assessments).The CRF Analyzer
This analyzer calculates an optimal bitrate for the higher profile.
Other profiles are declined top to bottom from the initial gap between each profiles of the template ladder.The Metric Analyzer
This analyzer encodes multiple bitrates for each profile in the template ladder (from min to max, respecting a bitrate step defined by the user)
It then calculates video quality metrics for each of these encodings (only ssim or psnr for now).
The final optimized ladder will be constructed choosing for the best quality/bitrate ratio (similar to Netflix).### The template encoding ladder
It is composed of multiple encoding profile object.
Each encoding profile is defined by those attributes:
- __width__ (int): Video definition width
- __height__ (int): Video definition height
- __bitrate_default__ (int): This should be the bitrate of your static encoding ladder
- __bitrate_min__ (int): This is the minimal bitrate you set for this profile in the output optimized encoding ladder
- __bitrate_max__ (int): This is the maximal bitrate you set for this profile in the output optimized encoding ladder
- __required__ (bool): Indicates if you authorize the script to remove this profile if considered not useful after optimization (conditions for this to happen are explained after)
- __bitrate_factor__ (float): this is a private attribute calculated after initialization of the template encoding ladder##### See this template example
| width | height | bitrate_default | bitrate_min | bitrate_max | required |
| --- | --- | --- | --- | --- | --- |
| *in pixels* | *in pixels* | *in bits per second* | *in bits per second* | *in bits per second* | *bool* |
| 1920 | 1080 | 4500000 | 2000000 | 6000000 | True |
| 1280 | 720 | 3400000 | 1300000 | 4500000 | True |
| 960 | 540 | 2100000 | 700000 | 3000000 | True |
| 640 | 360 | 1100000 | 300000 | 2000000 | True |
| 480 | 270 | 750000 | 300000 | 900000 | False |
| 480 | 270 | 300000 | 150000 | 500000 | True |
##### What does it imply? *(soon)*#### In depth: *(soon)*
- How to choose the analysis parameters
- What is the multiple part analysis
- How is the weighted average bitrate calculated
- Documentation for the JSON ouput___
## Installation:
This is package requires at least Python 3.4.You need to have ffmpeg and ffprobe installed on the host running the script.
## Example:
This is an example using the CRF Analyzer method.##### Code:
```python
# -*- coding: utf8 -*-from pertitleanalysis import per_title_analysis as pta
# create your template encoding ladder
PROFILE_LIST = []
PROFILE_LIST.append(pta.EncodingProfile(1920, 1080, 4500000, 2000000, 6000000, True))
PROFILE_LIST.append(pta.EncodingProfile(1280, 720, 3400000, 1300000, 4500000, True))
PROFILE_LIST.append(pta.EncodingProfile(960, 540, 2100000, 700000, 300000, True))
PROFILE_LIST.append(pta.EncodingProfile(640, 360, 1100000, 300000, 2000000, True))
PROFILE_LIST.append(pta.EncodingProfile(480, 270, 750000, 300000, 900000, False))
PROFILE_LIST.append(pta.EncodingProfile(480, 270, 300000, 150000, 500000, True))
LADDER = pta.EncodingLadder(PROFILE_LIST)# Create a new CRF analysis provider
ANALYSIS = pta.CrfAnalyzer("{{ your_input_file_path }}", LADDER)
# Launch various analysis
ANALYSIS.process(1, 1920, 1080, 23, 2)
ANALYSIS.process(10, 1920, 1080, 23, 2)# Print results
print(ANALYSIS.get_json())
```##### JSON ouput:
```json
{
"analyses": [
{
"average_bitrate": 3869192,
"optimized_encoding_ladder": {
"encoding_profiles": [
{
"bitrate": 3869192,
"bitrate_savings": 630808,
"height": 1080,
"width": 1920
},
{
"bitrate": 2923389,
"bitrate_savings": 476611,
"height": 720,
"width": 1280
},
{
"bitrate": 1805622,
"bitrate_savings": 294378,
"height": 540,
"width": 960
},
{
"bitrate": 945802,
"bitrate_savings": 154198,
"height": 360,
"width": 640
},
{
"bitrate": 644865,
"bitrate_savings": 105135,
"height": 270,
"width": 480
},
{
"bitrate": 257946,
"bitrate_savings": 42054,
"height": 270,
"width": 480
}
],
"overall_bitrate_ladder": 10446816,
"overall_bitrate_savings": 1703184
},
"optimal_bitrate": 3869192,
"parameters": {
"crf_value": 23,
"height": 1080,
"idr_interval": 2,
"method": "CRF",
"number_of_parts": 1,
"part_duration": 60.0,
"width": 1920
},
"processing_date": "2018-01-04 16:19:41.460371",
"standard_deviation": null
},
{
"average_bitrate": 3844318.1,
"optimized_encoding_ladder": {
"encoding_profiles": [
{
"bitrate": 4747733,
"bitrate_savings": -247733,
"height": 1080,
"width": 1920
},
{
"bitrate": 3587176,
"bitrate_savings": -187176,
"height": 720,
"width": 1280
},
{
"bitrate": 2100000,
"bitrate_savings": 0,
"height": 540,
"width": 960
},
{
"bitrate": 1160556,
"bitrate_savings": -60556,
"height": 360,
"width": 640
},
{
"bitrate": 791288,
"bitrate_savings": -41288,
"height": 270,
"width": 480
},
{
"bitrate": 316515,
"bitrate_savings": -16515,
"height": 270,
"width": 480
}
],
"overall_bitrate_ladder": 12703268,
"overall_bitrate_savings": -553268
},
"optimal_bitrate": 4747733.0,
"parameters": {
"crf_value": 23,
"height": 1080,
"idr_interval": 2,
"method": "CRF",
"number_of_parts": 10,
"part_duration": 6.0,
"width": 1920
},
"processing_date": "2018-01-04 16:20:32.904371",
"standard_deviation": 1372795.7042960383
}
],
"template_encoding_ladder": {
"encoding_profiles": [
{
"bitrate": 4500000,
"constraints": {
"bitrate_factor": 1.0,
"bitrate_max": 6000000,
"bitrate_min": 2000000,
"required": true
},
"height": 1080,
"width": 1920
},
{
"bitrate": 3400000,
"constraints": {
"bitrate_factor": 1.3235294117647058,
"bitrate_max": 4500000,
"bitrate_min": 1300000,
"required": true
},
"height": 720,
"width": 1280
},
{
"bitrate": 2100000,
"constraints": {
"bitrate_factor": 2.142857142857143,
"bitrate_max": 2100000,
"bitrate_min": 700000,
"required": true
},
"height": 540,
"width": 960
},
{
"bitrate": 1100000,
"constraints": {
"bitrate_factor": 4.090909090909091,
"bitrate_max": 2000000,
"bitrate_min": 300000,
"required": true
},
"height": 360,
"width": 640
},
{
"bitrate": 750000,
"constraints": {
"bitrate_factor": 6.0,
"bitrate_max": 900000,
"bitrate_min": 300000,
"required": false
},
"height": 270,
"width": 480
},
{
"bitrate": 300000,
"constraints": {
"bitrate_factor": 15.0,
"bitrate_max": 500000,
"bitrate_min": 150000,
"required": true
},
"height": 270,
"width": 480
}
],
"overall_bitrate_ladder": 12150000
},
"input_file_path": "{{ your_input_file_path }}"
}
```