Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/enkiwang/ps-oct
Polarization-sensitive optical coherence tomography
https://github.com/enkiwang/ps-oct
deep-learning medical-imaging optical-coherence-tomography osteoarthritis-severity-detection ps-oct
Last synced: 13 days ago
JSON representation
Polarization-sensitive optical coherence tomography
- Host: GitHub
- URL: https://github.com/enkiwang/ps-oct
- Owner: enkiwang
- Created: 2022-03-22T09:26:35.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2022-03-22T09:51:24.000Z (almost 3 years ago)
- Last Synced: 2024-11-06T22:06:37.347Z (2 months ago)
- Topics: deep-learning, medical-imaging, optical-coherence-tomography, osteoarthritis-severity-detection, ps-oct
- Language: Python
- Homepage:
- Size: 39.1 KB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# PS-OCT
This repository provides codes for "Polarization-sensitive optical coherence tomography with deep learning for detecting the local distribution of osteoarthritis severities".## Regression
In regression case, we experiment on two types of regression labels: coarse labels and dense labels.
For coarse label regression:
```python
GPU_ID=0
python main.py --img_type='phase' --epoch=150 --gpu_id=${GPU_ID} --model_select='vgg16' --step_size 20 --gamma 0.2
python main.py --img_type='phase' --epoch=150 --gpu_id=${GPU_ID} --model_select='resnet18' --step_size 20 --gamma 0.2
python main.py --img_type='phase' --epoch=150 --gpu_id=${GPU_ID} --model_select='densenet121' --step_size 20 --gamma 0.2
python main.py --img_type='phase' --epoch=150 --gpu_id=${GPU_ID} --model_select='mobilenetv2' --step_size 20 --gamma 0.2
```Similarly, you can experiment on "intensity" images by changing "phase" to "intensity".
For dense label regression:
```python
GPU_ID=0
python main_dense.py --img_type='phase' --epoch=150 --gpu_id=${GPU_ID} --model_select='vgg16' --step_size 20 --gamma 0.2
python main_dense.py --img_type='phase' --epoch=150 --gpu_id=${GPU_ID} --model_select='resnet18' --step_size 20 --gamma 0.2
python main_dense.py --img_type='phase' --epoch=150 --gpu_id=${GPU_ID} --model_select='densenet121' --step_size 20 --gamma 0.2
python main_dense.py --img_type='phase' --epoch=150 --gpu_id=${GPU_ID} --model_select='mobilenetv2' --step_size 20 --gamma 0.2
```## Classification
For PS-OCT classification:
```python
GPU_ID=0
python main_class.py --img_type='phase' --num_class 2 --epoch=150 --gpu_id=${GPU_ID} --model_select='vgg16' --step_size 7 --gamma 0.2
python main_class.py --img_type='phase' --num_class 2 --epoch=150 --gpu_id=${GPU_ID} --model_select='resnet18' --step_size 7 --gamma 0.2
python main_class.py --img_type='phase' --num_class 2 --epoch=150 --gpu_id=${GPU_ID} --model_select='densenet121' --step_size 7 --gamma 0.2
python main_class.py --img_type='phase' --num_class 2 --epoch=150 --gpu_id=${GPU_ID} --model_select='mobilenetv2' --step_size 7 --gamma 0.2
```