Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/enkiwang/ps-oct

Polarization-sensitive optical coherence tomography
https://github.com/enkiwang/ps-oct

deep-learning medical-imaging optical-coherence-tomography osteoarthritis-severity-detection ps-oct

Last synced: 2 days ago
JSON representation

Polarization-sensitive optical coherence tomography

Awesome Lists containing this project

README

        

# PS-OCT
This repository provides codes for "Polarization-sensitive optical coherence tomography with deep learning for detecting the local distribution of osteoarthritis severities".

## Regression

In regression case, we experiment on two types of regression labels: coarse labels and dense labels.

For coarse label regression:
```python
GPU_ID=0
python main.py --img_type='phase' --epoch=150 --gpu_id=${GPU_ID} --model_select='vgg16' --step_size 20 --gamma 0.2
python main.py --img_type='phase' --epoch=150 --gpu_id=${GPU_ID} --model_select='resnet18' --step_size 20 --gamma 0.2
python main.py --img_type='phase' --epoch=150 --gpu_id=${GPU_ID} --model_select='densenet121' --step_size 20 --gamma 0.2
python main.py --img_type='phase' --epoch=150 --gpu_id=${GPU_ID} --model_select='mobilenetv2' --step_size 20 --gamma 0.2
```

Similarly, you can experiment on "intensity" images by changing "phase" to "intensity".

For dense label regression:

```python
GPU_ID=0
python main_dense.py --img_type='phase' --epoch=150 --gpu_id=${GPU_ID} --model_select='vgg16' --step_size 20 --gamma 0.2
python main_dense.py --img_type='phase' --epoch=150 --gpu_id=${GPU_ID} --model_select='resnet18' --step_size 20 --gamma 0.2
python main_dense.py --img_type='phase' --epoch=150 --gpu_id=${GPU_ID} --model_select='densenet121' --step_size 20 --gamma 0.2
python main_dense.py --img_type='phase' --epoch=150 --gpu_id=${GPU_ID} --model_select='mobilenetv2' --step_size 20 --gamma 0.2
```

## Classification

For PS-OCT classification:

```python
GPU_ID=0
python main_class.py --img_type='phase' --num_class 2 --epoch=150 --gpu_id=${GPU_ID} --model_select='vgg16' --step_size 7 --gamma 0.2
python main_class.py --img_type='phase' --num_class 2 --epoch=150 --gpu_id=${GPU_ID} --model_select='resnet18' --step_size 7 --gamma 0.2
python main_class.py --img_type='phase' --num_class 2 --epoch=150 --gpu_id=${GPU_ID} --model_select='densenet121' --step_size 7 --gamma 0.2
python main_class.py --img_type='phase' --num_class 2 --epoch=150 --gpu_id=${GPU_ID} --model_select='mobilenetv2' --step_size 7 --gamma 0.2
```