Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/eonist/parallelloop
π Parallel + functional operations in swift
https://github.com/eonist/parallelloop
concurrency functional functional-programming parallel
Last synced: about 2 months ago
JSON representation
π Parallel + functional operations in swift
- Host: GitHub
- URL: https://github.com/eonist/parallelloop
- Owner: eonist
- Created: 2020-07-18T13:23:39.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2024-07-21T11:30:01.000Z (6 months ago)
- Last Synced: 2024-07-21T12:47:35.636Z (6 months ago)
- Topics: concurrency, functional, functional-programming, parallel
- Language: Swift
- Homepage:
- Size: 37.1 KB
- Stars: 7
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
![Tests](https://github.com/light-stream/ParallelLoop/workflows/Tests/badge.svg)
[![codebeat badge](https://codebeat.co/badges/f8a6bae6-963e-4589-9b72-d451356b733d)](https://codebeat.co/projects/github-com-eonist-parallelloop-master)# ParallelLoop π
> Parallel + functional operations in swift
### Features:
- π―ββοΈ Process data in parallel over many cpu-cores and awaits
- π Functional operations you already know and love
- βοΈ Thread safe values across cpu-cores with AtomicValue
- β© Easily stride big data-sets with the array divide operation
- πToggle concurrency on / off### Examples:
```swift
// Parallel map
let result = [0, 1, 2, 3].concurrentMap { i in
i * 2
}
print(result) // 0, 2, 4, 6// Parallel forEach
[1, 2, 3, 4].concurrentForEach {
print($0) // 1,2,3,4
}// Parallel compactMap
let array = [0, 1, nil, 3].concurrentCompactMap { i in
i * 2
}
print(array) // 0, 2, 6// Parallel reduce
let str: String = [0, 1, 2].concurrentReduce("") {
$0 + "\( $1)"
} // "012"
print(str)// Atomic value:
let x: Atomic = .init(0) // can be written and read across cores and threads
DispatchQueue.concurrentPerform(iterations: 1000) { y in
x.mutate { $0 += 1 }
}
print(x.value) // 1000// Stride concurrent operations on big data sets
// We stride to utlize cores better
// The cost of managing threads out way the benefit on big data sets
let batches = Array(0..<1000).divideBy(by: 20) // try different amounts
batches.concurrentForEach { batch in // one batch at the time (50 times), avoids cpu admin overhead
batch.forEach { $0 } // only assigns 20 operations at the time
} // Use .flatMap { $0 } if you need to flatten the result etc// or even easier:
// The batches method also ensures a good distribution for big and small data sets
// great when the data-set count varies
Array(0..<1000).batches(spread: 20).concurrentForEach { batch in
batch.forEach { $0 }
}// Another example using flatMap:
let values: [Int] = Array(0..<1000).batches(spread: 20).concurrentFlatMap { batch in
batch.map { $0 }
}
```### Installation:
- Swift packag manager: `.package(url: "https://github.com/passbook/ParallelLoop.git", .branch("master"))`
- XCode package-manager: search for `ParallelLoop`