An open API service indexing awesome lists of open source software.

https://github.com/ercrema/yayoi_demo

Data and R scripts for the paper 'Regional demographic responses to the arrival of rice farming in prehistoric Japan'
https://github.com/ercrema/yayoi_demo

Last synced: 5 months ago
JSON representation

Data and R scripts for the paper 'Regional demographic responses to the arrival of rice farming in prehistoric Japan'

Awesome Lists containing this project

README

        

[![DOI](https://zenodo.org/badge/370637019.svg)](https://zenodo.org/doi/10.5281/zenodo.11398533)

# Data and R scripts for the paper 'Regional variations in the demographic response to the arrival of rice farming in prehistoric Japan'

This repository contains data and scripts used in the following paper:

[Crema, E. R., Carrignon, S., Shoda, S., & Stevens, C. J., & Shoda, S. (2024). Regional variations in the demographic response to the arrival of rice farming in prehistoric Japan. _Antiquity_. doi:10.15184/aqy.2024.146](https://doi.org/10.15184/aqy.2024.146)

The repository is organised into five main directories: _data_, _analyses_, _results_, _figures_, _tables_, and _src_.
The _data_ folder contains all relevant radiocarbon and settlement data, _analyses_ contains core R scripts for executing all analyses and estimates, _results_ contains R image files of all outputs, _figures_ and _tables_ contain all figures and tables for the manuscript and the supplementary materials as well as R scripts required to generate them, and _src_ contains additional custom utility R functions.

## Analyses Summary

### Settlement Data Analyses

Settlement data were obtained from the [「縄文・弥生集落データベース」("Jomon-Yayoi settlement database") of the National Museum of Japanese History](https://www.rekihaku.ac.jp/up-cgi/login.pl?p=param/jomo/db_param), and stored as a CSV file (`data/site_raw.csv`). The file `data/data_prep_sites.R` contains data wrangling R scripts that convert relevant data into an R data.frame stored in the R image file `data/sitedata.RData`. Scripts for the composite Kernel Density estimates (see manuscript and ESM for details) are stored in the R file `figures/figure2.R`. Pipeline: `data/site_raw.csv` → `data/sitedata.RData`.

### Bayesian Analyses of Radiocarbon Dates

14C data were obtained from [radiocarbon database of the National Museum of Japanese History](https://www.rekihaku.ac.jp/up-cgi/login.pl?p=param/esrd_en/db_param). We joined the cleaned and translated version of the database (`c14db_1.1.0.csv`, obtained [here](https://www.rekihaku.ac.jp/up-cgi/login.pl?p=param/esrd_en/db_param)) to the full Japanese version of the database (`.xslx` files in `/data/rekihaku_downloads`, obtained [here](https://www.rekihaku.ac.jp/up-cgi/login.pl?p=param/esrd/db_param)) to extract relevant field for identifying anthropogenic contexts. The file `data/data_prep_c14.R` contains pre-processing R scripts for generating the core dataset used in this paper, stored in the R image file `data/c14data.RData`. Bayesian analyses were carried out using the [nimbleCarbon](https://CRAN.R-project.org/package=nimbleCarbon) R package, which contains custom probability distributions and utility functions for the [NIMBLE](https://cran.r-project.org/web/packages/nimble/index.html) probabilistic programming language. The files `analyses/icar500.R` and `analyses/icar750.R` contain R scripts for fitting the Bayesian models for the 500 and 750 yrs time intervals. Posterior samples are stored in the R image files `results/icar_c14doubleRes500.RData` and `results/icar_c14doubleRes750.RData`.
Pipelines:
1. `data/rekihaku_downloads/1200_100_T.xlsx` & `data/rekihaku_downloads/2000_1201_T.xlsx` & `data/rekihaku_downloads/3000_2001_T.xlsx` & `data/rekihaku_downloads/5000_3001_T.xlsx` → `data/rekihaku_downloads/bindCSV.R` → `data/rekihaku_downloads/binded.csv`.
2. `data/rekihaku_downloads/binded.csv` & `data/rekihaku_downloads/c14db_1.1.0.csv` → `data/data_prep_c14.R` → `data/c14data.RData`.
3. `data/c14data.RData` → `analyses/icar500.R` → `results/icar_c14doubleRes500.RData`
4. `data/c14data.RData` → `analyses/icar750.R` → `results/icar_c14doubleRes750.RData`

### Absolute Population Estimates

Absolute population estimates were calculated using a modified version of the equation introduced by Koyama (Koyama, S.1978. Jomon Subsistence and Population. Senri Ethnological Studies, 2, 1–65.) with an updated dataset. The core calculations are included as an R script in the file `analyses/pop_dens_est.R`, with the outputs stored in the CSV files `results/pop_estimate_compare.csv` (comparison of the different estimates discussed in the supplementary materials) and `results/pop_estimate_region.csv` (estimates used in table 1 of the manuscript). Raw input data required for the calculations are Koyama's original data (`data/koyama_popestimate_1984.csv`), the number of archaeological sites [published by the Japanese Agency of Cultural Affairs](https://www.bunka.go.jp/seisaku/bunkazai/shokai/pdf/h29_03_maizotokei.pdf) (`data/maizobunkazai_2017.csv`), and a lookup table for matching administrative units (prefectures) to the regions used in this paper (`data/prefecture_data.csv`). Pipeline: `data/maizobunkazai_2017.csv` & `data/prefecture_data.csv` & `data/koyama_popestimate_1984.csv` →
`analyses/pop_dens_est.R` → `results/pop_estimate_compare.csv` & `results/pop_estimate_region.csv`.

### Figures and Tables
Main (`figures/figure1.pdf` ~ `figures/figure6.pdf`) and supplementary (`figures/figureS1.pdf` ~ `figures/figureS3.pdf`) are generated using the Rscript in `figures/figures_main.R` and `figures/figures_esm.R`.
Pipelines:
- Main Figures: `data/c14data.RData` & `data/sitedata.RData` & `results/icar_c14doubleRes500.RData` & `results/icar_c14doubleRes750.RData` → `figures/figures_main.R` → `figures/figure1.pdf` ~ `figures/figure6.pdf`
- Supplementary Figures: `results/pop_estimate_compare.csv` → `figures/figures_esm.R` → `figures/figureS1.pdf` ~ `figures/figureS3.pdf`

## File Structure

### data
* `c14data.RData`
* `data_prep_c14.R`
* `data_prep_sites.R`
* `data_summary.R`
* `koyama_popestimate_1984.csv`
* `maizobunkazai_2017.csv`
* `prefecture_data.csv`
* `sitedata.RData`
* `site_raw.csv`

#### /data/rekihaku_downloads
* `1200_100_T.xlsx`
* `2000_1201_T.xlsx`
* `3000_2001_T.xlsx`
* `5000_3001_T.xlsx`
* `c14db_1.1.0.csv`
* `binded.csv`
* `bindCSV.R`

### analyses
* `icar500.R`
* `icar750.R`
* `pop_dens_est.R`

### results
* `icar_c14doubleRes500.RData`
* `icar_c14doubleRes750.RData`
* `pop_estimate_compare.csv`
* `pop_estimate_region.csv`

### figures
* `figures_main.R`
* `figures_esm.R`
* `figure1.pdf` ~ `figure6.pdf`
* `figureS1.pdf` ~ `figureS3.pdf`

### tables
* `tables_main.R`
* `tables_esm.R`
* `table1.csv`
* `tableS1.csv`
* `tableS2.csv`

### src
* `dbscanID.R`

## R Session Info

```
attached base packages:
[1] parallel stats graphics grDevices utils datasets methods base

other attached packages:
[1] dbscan_1.1-11 spdep_1.2-8 spData_2.2.2 coda_0.19-4
[5] sf_1.0-13 rnaturalearth_0.3.2 latex2exp_0.9.6 RColorBrewer_1.1-3
[9] here_1.0.1 rcarbon_1.5.1 nimbleCarbon_0.2.4 nimble_1.0.1
[13] gridExtra_2.3 dplyr_1.1.2 ggplot2_3.4.2

loaded via a namespace (and not attached):
[1] tidyselect_1.2.0 fastmap_1.1.1 spatstat.geom_3.2-2
[4] pracma_2.4.2 spatstat.explore_3.2-1 digest_0.6.31
[7] rpart_4.1.19 lifecycle_1.0.3 spatstat.data_3.0-1
[10] magrittr_2.0.3 compiler_4.3.0 rlang_1.1.1
[13] doSNOW_1.0.20 tools_4.3.0 igraph_1.5.0
[16] utf8_1.2.3 yaml_2.3.7 knitr_1.43
[19] sp_1.6-1 classInt_0.4-9 abind_1.4-5
[22] KernSmooth_2.23-20 withr_2.5.0 purrr_1.0.1
[25] numDeriv_2016.8-1.1 grid_4.3.0 polyclip_1.10-4
[28] fansi_1.0.4 e1071_1.7-13 colorspace_2.1-0
[31] progressr_0.13.0 scales_1.2.1 iterators_1.0.14
[34] spatstat.utils_3.0-3 spatstat_3.0-6 cli_3.6.1
[37] rmarkdown_2.21 generics_0.1.3 rstudioapi_0.14
[40] httr_1.4.6 DBI_1.1.3 proxy_0.4-27
[43] stringr_1.5.0 splines_4.3.0 spatstat.model_3.2-4
[46] s2_1.1.4 vctrs_0.6.3 boot_1.3-28.1
[49] Matrix_1.5-4 jsonlite_1.8.4 tensor_1.5
[52] elevatr_0.4.5 foreach_1.5.2 units_0.8-2
[55] snow_0.4-4 goftest_1.2-3 glue_1.6.2
[58] spatstat.random_3.1-5 codetools_0.2-19 stringi_1.7.12
[61] gtable_0.3.3 deldir_1.0-9 munsell_0.5.0
[64] tibble_3.2.1 pillar_1.9.0 htmltools_0.5.5
[67] R6_2.5.1 wk_0.7.3 rprojroot_2.0.3
[70] evaluate_0.21 lattice_0.21-8 class_7.3-21
[73] Rcpp_1.0.11 spatstat.linnet_3.1-1 nlme_3.1-162
[76] spatstat.sparse_3.0-2 mgcv_1.8-42 xfun_0.39
[79] pkgconfig_2.0.3
```

## Funding
This research was funded by the ERC grant _Demography, Cultural Change, and the Diffusion of Rice and Millets during the Jomon-Yayoi transition in prehistoric Japan (ENCOUNTER)_ (Project N. 801953, PI: Enrico Crema) and by a Philip Leverhulme Prize (PLP-2019-304) in archaeology awarded to Enrico Crema.

## Licence
CC-BY 3.0