Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/erdogant/distfit

distfit is a python library for probability density fitting.
https://github.com/erdogant/distfit

cumulative-distribution-function density-functions fitting-curve hypothesis-testing kolmogorov-smirnov pdf plot probability-distribution probability-statistics pypi qqplot sse

Last synced: 26 days ago
JSON representation

distfit is a python library for probability density fitting.

Awesome Lists containing this project

README

        





[![Python](https://img.shields.io/pypi/pyversions/distfit)](https://img.shields.io/pypi/pyversions/distfit)
[![Pypi](https://img.shields.io/pypi/v/distfit)](https://pypi.org/project/distfit/)
[![Docs](https://img.shields.io/badge/Sphinx-Docs-Green)](https://erdogant.github.io/distfit/)
[![LOC](https://sloc.xyz/github/erdogant/distfit/?category=code)](https://github.com/erdogant/distfit/)
[![Downloads](https://static.pepy.tech/personalized-badge/distfit?period=month&units=international_system&left_color=grey&right_color=brightgreen&left_text=PyPI%20downloads/month)](https://pepy.tech/project/distfit)
[![Downloads](https://static.pepy.tech/personalized-badge/distfit?period=total&units=international_system&left_color=grey&right_color=brightgreen&left_text=Downloads)](https://pepy.tech/project/distfit)
[![License](https://img.shields.io/badge/license-MIT-green.svg)](https://github.com/erdogant/distfit/blob/master/LICENSE)
[![Forks](https://img.shields.io/github/forks/erdogant/distfit.svg)](https://github.com/erdogant/distfit/network)
[![Issues](https://img.shields.io/github/issues/erdogant/distfit.svg)](https://github.com/erdogant/distfit/issues)
[![Project Status](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active)
[![DOI](https://zenodo.org/badge/231843440.svg)](https://zenodo.org/badge/latestdoi/231843440)
[![Medium](https://img.shields.io/badge/Medium-Blog-black)](https://erdogant.github.io/distfit/pages/html/Documentation.html#medium-blog)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://erdogant.github.io/distfit/pages/html/Documentation.html#colab-notebook)
[![Donate](https://img.shields.io/badge/Support%20this%20project-grey.svg?logo=github%20sponsors)](https://erdogant.github.io/distfit/pages/html/Documentation.html#)

#
### Blogs
#### [1. How to Find the Best Theoretical Distribution for Your Data](https://erdogant.github.io/distfit/pages/html/Documentation.html#medium-blog)

#### [2. Outlier Detection Using Distribution Fitting in Univariate Datasets](https://towardsdatascience.com/outlier-detection-using-distribution-fitting-in-univariate-data-sets-ac8b7a14d40e)

#### [3. Step-by-Step Guide to Generate Synthetic Data by Sampling From Univariate Distributions](https://towardsdatascience.com/step-by-step-guide-to-generate-synthetic-data-by-sampling-from-univariate-distributions-6b0be4221cb1)

#

### [Documentation pages](https://erdogant.github.io/distfit/)

#

``distfit`` is a python package for probability density fitting of univariate distributions for random variables.
With the random variable as an input, distfit can find the best fit for parametric, non-parametric, and discrete distributions.

* For the parametric approach, the distfit library can determine the best fit across 89 theoretical distributions.
To score the fit, one of the scoring statistics for the good-of-fitness test can be used used, such as RSS/SSE, Wasserstein,
Kolmogorov-Smirnov (KS), or Energy. After finding the best-fitted theoretical distribution, the loc, scale,
and arg parameters are returned, such as mean and standard deviation for normal distribution.

* For the non-parametric approach, the distfit library contains two methods, the quantile and percentile method.
Both methods assume that the data does not follow a specific probability distribution. In the case of the quantile method,
the quantiles of the data are modeled whereas for the percentile method, the percentiles are modeled.

* In case the dataset contains discrete values, the distift library contains the option for discrete fitting.
The best fit is then derived using the binomial distribution.

#
**⭐️ Star this repo if you like it ⭐️**
#

### Installation

##### Install distfit from PyPI
```bash
pip install distfit
```

##### Install from github source (beta version)
```bash
install git+https://github.com/erdogant/distfit
```

##### Check version
```python
import distfit
print(distfit.__version__)
```

##### The following functions are available after installation:

```python
# Import library
from distfit import distfit

dfit = distfit() # Initialize
dfit.fit_transform(X) # Fit distributions on empirical data X
dfit.predict(y) # Predict the probability of the resonse variables
dfit.plot() # Plot the best fitted distribution (y is included if prediction is made)
```


### Examples

#

##### [Example: Quick start to find best fit for your input data](https://erdogant.github.io/distfit/pages/html/Examples.html#)

```python

# [distfit] >INFO> fit
# [distfit] >INFO> transform
# [distfit] >INFO> [norm ] [0.00 sec] [RSS: 0.00108326] [loc=-0.048 scale=1.997]
# [distfit] >INFO> [expon ] [0.00 sec] [RSS: 0.404237] [loc=-6.897 scale=6.849]
# [distfit] >INFO> [pareto ] [0.00 sec] [RSS: 0.404237] [loc=-536870918.897 scale=536870912.000]
# [distfit] >INFO> [dweibull ] [0.06 sec] [RSS: 0.0115552] [loc=-0.031 scale=1.722]
# [distfit] >INFO> [t ] [0.59 sec] [RSS: 0.00108349] [loc=-0.048 scale=1.997]
# [distfit] >INFO> [genextreme] [0.17 sec] [RSS: 0.00300806] [loc=-0.806 scale=1.979]
# [distfit] >INFO> [gamma ] [0.05 sec] [RSS: 0.00108459] [loc=-1862.903 scale=0.002]
# [distfit] >INFO> [lognorm ] [0.32 sec] [RSS: 0.00121597] [loc=-110.597 scale=110.530]
# [distfit] >INFO> [beta ] [0.10 sec] [RSS: 0.00105629] [loc=-16.364 scale=32.869]
# [distfit] >INFO> [uniform ] [0.00 sec] [RSS: 0.287339] [loc=-6.897 scale=14.437]
# [distfit] >INFO> [loggamma ] [0.12 sec] [RSS: 0.00109042] [loc=-370.746 scale=55.722]
# [distfit] >INFO> Compute confidence intervals [parametric]
# [distfit] >INFO> Compute significance for 9 samples.
# [distfit] >INFO> Multiple test correction method applied: [fdr_bh].
# [distfit] >INFO> Create PDF plot for the parametric method.
# [distfit] >INFO> Mark 5 significant regions
# [distfit] >INFO> Estimated distribution: beta [loc:-16.364265, scale:32.868811]
```





#

##### [Example: Plot summary of the tested distributions](https://erdogant.github.io/distfit/pages/html/Examples.html#plot-rss)

After we have a fitted model, we can make some predictions using the theoretical distributions.
After making some predictions, we can plot again but now the predictions are automatically included.





#

##### [Example: Make predictions using the fitted distribution](https://erdogant.github.io/distfit/pages/html/Examples.html#make-predictions)





#

##### [Example: Test for one specific distributions](https://erdogant.github.io/distfit/pages/html/Examples.html#fit-for-one-specific-distribution)

The full list of distributions is listed here: https://erdogant.github.io/distfit/pages/html/Parametric.html





#

##### [Example: Test for multiple distributions](https://erdogant.github.io/distfit/pages/html/Examples.html#fit-for-multiple-distributions)

The full list of distributions is listed here: https://erdogant.github.io/distfit/pages/html/Parametric.html





#

##### [Example: Fit discrete distribution](https://erdogant.github.io/distfit/pages/html/Discrete.html)

```python
from scipy.stats import binom
# Generate random numbers

# Set parameters for the test-case
n = 8
p = 0.5

# Generate 10000 samples of the distribution of (n, p)
X = binom(n, p).rvs(10000)
print(X)

# [5 1 4 5 5 6 2 4 6 5 4 4 4 7 3 4 4 2 3 3 4 4 5 1 3 2 7 4 5 2 3 4 3 3 2 3 5
# 4 6 7 6 2 4 3 3 5 3 5 3 4 4 4 7 5 4 5 3 4 3 3 4 3 3 6 3 3 5 4 4 2 3 2 5 7
# 5 4 8 3 4 3 5 4 3 5 5 2 5 6 7 4 5 5 5 4 4 3 4 5 6 2...]

# Import distfit
from distfit import distfit

# Initialize for discrete distribution fitting
dfit = distfit(method='discrete')

# Run distfit to and determine whether we can find the parameters from the data.
dfit.fit_transform(X)

# [distfit] >fit..
# [distfit] >transform..
# [distfit] >Fit using binomial distribution..
# [distfit] >[binomial] [SSE: 7.79] [n: 8] [p: 0.499959] [chi^2: 1.11]
# [distfit] >Compute confidence interval [discrete]

```





#

##### [Example: Make predictions on unseen data for discrete distribution](https://erdogant.github.io/distfit/pages/html/Discrete.html#make-predictions)





#

##### [Example: Generate samples based on the fitted distribution](https://erdogant.github.io/distfit/pages/html/Generate.html)


### Contributors
Setting up and maintaining distfit has been possible thanks to users and contributors. Thanks:





### Citation
Please cite ``distfit`` in your publications if this is useful for your research. See column right for citation information.

### Maintainer
* Erdogan Taskesen, github: [erdogant](https://github.com/erdogant)
* Contributions are welcome.
* If you wish to buy me a Coffee for this work, it is very appreciated :)