Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/erictleung/nlmitc19
:speaker: Twitter analysis of #NLMITC19
https://github.com/erictleung/nlmitc19
conference informatics nlm r rmarkdown training twitter
Last synced: 17 days ago
JSON representation
:speaker: Twitter analysis of #NLMITC19
- Host: GitHub
- URL: https://github.com/erictleung/nlmitc19
- Owner: erictleung
- Created: 2019-02-05T23:23:31.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2019-06-29T06:15:54.000Z (over 5 years ago)
- Last Synced: 2024-06-11T23:04:49.711Z (7 months ago)
- Topics: conference, informatics, nlm, r, rmarkdown, training, twitter
- Homepage:
- Size: 481 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.Rmd
Awesome Lists containing this project
README
---
title: "#NLMITC19 Twitter Analysis"
author: "Eric Leung"
output:
md_document:
toc: true
df_print: "kable"
---```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, collapse = TRUE)
```## Load libraries
```{r load_packages, message=FALSE, warning=FALSE}
library(tidyverse)
library(tidytext)
library(ggrepel)if (!requireNamespace("rtweet", quietly = TRUE)) install.packages("rtweet")
library(rtweet)
```## Query data
Below is the code to query the Twitter data for the `#NLMITC19`. I ran this at
2019-06-28 22:50.```{r query_tweets, eval=FALSE}
rt <- search_tweets("#NLMITC19 OR #NLMIT19", n = 1800, include_rts = FALSE)saveRDS(rt, "nlmitc19_search.rds")
saveRDS(rt$status_id, "nlmitc19_search-ids.rds")
```But instead, here I'll just look up the status IDs.
```{r read_in_data}
ids_file <- "nlmitc19_search-ids.rds"
nlmitc19_file <- "nlmitc19_search.rds"# Read in search directly if exists
if (file.exists(nlmitc19_file)) {
rt <- readRDS(nlmitc19_file)
} else {
# Download status IDs file
download.file(
"https://github.com/erictleung/NLMITC19/blob/master/data/nlmitc19_search-ids.rds?raw=true",
ids_file
)# Read status IDs from downloaded file
ids <- readRDS(ids_file)# Lookup data associated with status ids
rt <- rtweet::lookup_tweets(ids)
}
```## General tweet prevalence over time
Code modified from [`rstudioconf_tweets`][mk].
[mk]: https://github.com/mkearney/rstudioconf_tweets
```{r tweets_over_time, fig.height=7, fig.width=9}
rt %>%
ts_plot("30 minutes", color = "transparent") +
geom_smooth(method = "loess",
se = FALSE,
span = 0.05,
size = 2,
color = "#0066aa") +
geom_point(size = 5,
shape = 21,
fill = "#ADFF2F99",
color = "#000000dd") +# ggplot2 theme
theme_minimal(base_size = 15) +
theme(axis.text = element_text(colour = "#222222"),
plot.title = element_text(size = rel(1.7), face = "bold"),
plot.subtitle = element_text(size = rel(1.3)),
plot.caption = element_text(colour = "#444444")) +# Caption information
labs(title = "Frequency of tweets about #NLMITC19 over time",
subtitle = "Twitter status counts aggregated using half-hour intervals",
caption = "\n\nSource: Data gathered via Twitter's standard `search/tweets` API using rtweet",
x = NULL, y = NULL)
```Makes sense considering there were two days of conference time.
## Most prolific tweeters?
```{r most_prolific_tweeter, fig.height=7, fig.width=9}
rt %>%
group_by(screen_name) %>%
summarise(tweets = n()) %>%
ggplot(aes(x = tweets, y = reorder(screen_name, tweets))) +
geom_point() +# Theme styling information
theme_minimal(base_size = 15) +
theme(axis.text = element_text(colour = "#222222"),
plot.title = element_text(size = rel(1.7), face = "bold"),
plot.subtitle = element_text(size = rel(1.3)),
plot.caption = element_text(colour = "#444444")) +# Labels
labs(title = "Top tweeters using\n#NLMITC19 or #NLMIT19",
x = "Total number of tweets",
y = "Twitter username",
caption = "\n\nSource: Data gathered via Twitter's standard `search/tweets` API using rtweet")
```## Relationship between follower count and tweet popularity
Do more followers have more popular tweets?
I take the average number of favorite of an individual's tweets and normalize it
based on the total number of tweets.```{r follower_vs_favorites, fig.height=7, fig.width=9}
rt %>%
# Preprocess and count average favorites normalized by number of tweets
group_by(screen_name) %>%
mutate(avg_fav = mean(favorite_count)) %>%
mutate(avg_norm_fav = avg_fav / n()) %>%
ungroup() %>%
select(screen_name, avg_fav, avg_norm_fav, followers_count) %>%
distinct() %>%# Offset to not create infinite values when log transforming
mutate(followers_count = followers_count + 0.001) %>%
mutate(avg_norm_fav = avg_norm_fav + 0.001) %>%# Plot results
ggplot(aes(x = followers_count, y = avg_norm_fav, label = screen_name)) +
geom_text_repel() +
geom_point() +# Use log-scale for x-axis and y-axis
labs(title = "Average normalized number of favorites\nversus user follower count",
x = "Number of followers",
y = "Average normalized number of favorites",
caption = "\nSource: Data gathered via Twitter's standard `search/tweets` API using rtweet") +# Theme styling information
theme_minimal(base_size = 15) +
theme(axis.text = element_text(colour = "#222222"),
plot.title = element_text(size = rel(1.7), face = "bold"),
plot.subtitle = element_text(size = rel(1.3)),
plot.caption = element_text(colour = "#444444"))
```## Chatterplot of tweet words
```{r process_for_chatter}
rt_no_stop <- rt %>%
# Just look at tweet text
select(text, favorite_count) %>%
# Remove web links
mutate(text = str_replace_all(text, "https?[:graph:]+", "'")) %>%# Remove mentions
# Rule are that names are alphanumeric and can have underscores.
# Names can also be preceeded with "." or end with some punctuation
# Twitter:
# help.twitter.com/en/managing-your-account/twitter-username-rules
# To avoid emails:
# stackoverflow.com/questions/4424179/how-to-validate-a-twitter-username-using-regex#comment21201837_4424288
mutate(text = str_replace_all(text,
"\\.?@([:alnum:]|_){1,15}(?![.A-Za-z])[:graph:]?",
"")) %>%# Tokenize text to just single words
unnest_tokens(word, text) %>%# Remove stop words (e.g., "a", "the", "and", etc)
anti_join(get_stopwords())# Get average number of favorites
rt_word_avg_fav <- rt_no_stop %>%
# Average favorite count
group_by(word) %>%
summarize(avg_fav = mean(favorite_count))# Count number of mentions
rt_counts <- rt_no_stop %>%
# Create word counts
count(word, sort = TRUE)# Filter low counts and join counts and average favorite score
chatter_rt <- rt_counts %>%
filter(n > 1) %>%
filter(word != "nlmitc19") %>%
left_join(rt_word_avg_fav, by = "word")
```Code below modified from ["RIP wordclouds, long live CHATTERPLOTS"][wordcloud].
[wordcloud]: https://towardsdatascience.com/rip-wordclouds-long-live-chatterplots-e76a76896098
```{r plot_chatter, fig.height=7, fig.width=9}
chatter_rt %>%
# Add small offset average favorite counts because some are zero and we log
# transform, which can introduce infinite values
mutate(avg_fav = avg_fav + 0.001) %>%# Gather just top 100 mentions
top_n(100, wt = n) %>%
ggplot(aes(x = avg_fav, y = n, label = word)) +
geom_text_repel(segment.alpha = 0,
aes(colour = avg_fav, size = n)) +# Set color gradient,log transform & customize legend
scale_color_gradient(low = "green3", high = "violetred",
trans = "log10",
guide = guide_colourbar(direction = "horizontal",
title.position = "top")) +
# Set word size range & turn off legend
scale_size_continuous(range = c(3, 10),
guide = FALSE) +# Use log-scale for x-axis
scale_x_log10() +
ggtitle(paste0("Top 100 words from ",
nrow(rt),
" #NLMITC19 tweets, by frequency"),
subtitle = "Word frequency (size) ~ Avg number of favorites (color)") +
labs(y = "Word frequency across all tweets",
x = "Avg number of favorites in tweets containing word (log scale)",
colour = "Avg num of favs (log)") +
# minimal theme & customizations
theme_minimal() +
theme(legend.position = c(0.20, 0.99),
legend.justification = c("right","top"),
panel.grid.major = element_line(colour = "whitesmoke"))
```## Session information
```{r}
sessionInfo()
```