Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/erikaduan/r_tips
A repository of R usage tips for data cleaning, data mining, data visualisation, statistical inference and machine learning
https://github.com/erikaduan/r_tips
data-science data-visualization machine-learning r rstats statistics
Last synced: 8 days ago
JSON representation
A repository of R usage tips for data cleaning, data mining, data visualisation, statistical inference and machine learning
- Host: GitHub
- URL: https://github.com/erikaduan/r_tips
- Owner: erikaduan
- License: cc-by-sa-4.0
- Created: 2018-10-09T05:21:07.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2024-08-29T06:08:58.000Z (4 months ago)
- Last Synced: 2024-08-29T07:30:23.945Z (4 months ago)
- Topics: data-science, data-visualization, machine-learning, r, rstats, statistics
- Language: R
- Homepage:
- Size: 30.6 MB
- Stars: 719
- Watchers: 24
- Forks: 191
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- jimsghstars - erikaduan/r_tips - A repository of R usage tips for data cleaning, data mining, data visualisation, statistical inference and machine learning (R)
README
# R programming tips
## 🎨 Data visualisation
+ [An introduction to `ggplot2` using volcano plots](https://github.com/erikaduan/r_tips/blob/master/tutorials/dv-volcano_plots_with_ggplot/dv-volcano_plots_with_ggplot.md) (Updated)
+ [Using `DiagrammeR` to draw flow charts](https://github.com/erikaduan/r_tips/blob/master/tutorials/dv-using_diagrammer/dv-using_diagrammer.md) (Updated)## 📚 Data cleaning
+ [Data cleaning using `data.table` or `tidyverse` (or Python `Pandas`)](https://github.com/erikaduan/r_tips/blob/master/tutorials/dc-data_table_vs_dplyr/dc-data_table_vs_dplyr.md) (Updated)
+ [Cleaning strings using regular expressions with base R or `stringr`](https://github.com/erikaduan/r_tips/blob/master/tutorials/dc-cleaning_strings/dc-cleaning_strings.md) (Updated)## 🔨 Productionisation
+ [Creating SQL <> R workflows - Part 1](https://github.com/erikaduan/r_tips/blob/master/tutorials/p-sql_to_r_workflows/p-sql_to_r_workflows_part_1.md) (Updated)
+ [Creating SQL <> R workflows - Part 2](https://github.com/erikaduan/r_tips/blob/master/tutorials/p-sql_to_r_workflows/p-sql_to_r_workflows_part_2.md) (Updated)
+ [Automating R Markdown report generation - Part 1](https://github.com/erikaduan/r_tips/blob/master/tutorials/p-automating_rmd_reports/p-automating_rmd_reports_part_1.md) (Updated)
+ [Automating R Markdown report generation - Part 2](https://github.com/erikaduan/r_tips/blob/master/tutorials/p-automating_rmd_reports/p-automating_rmd_reports_part_2.md) (updated)## 🔢 Statistical modelling
+ [Introduction to expectation and variance](https://github.com/erikaduan/r_tips/blob/master/tutorials/st-expectations_and_variance/st-expectation_and_variance.md)
+ [Beyond expectations: centrality measures in statistics](https://github.com/erikaduan/r_tips/blob/master/tutorials/2020-07-26_many-roads-to-the-middle/2020-07-26_many-roads-to-the-middle.md)## 🔮 Machine learning
+ [Working with dummy variables and factors](https://github.com/erikaduan/r_tips/blob/master/tutorials/2020-04-23_dummy-variables-and-factors/2020-04-23_dummy-variables-and-factors.md)# Other resources
The resources below also cover a comprehensive range of practical R tutorials.+ [Statistical Computing](https://36-750.github.io/) by Alex Reinhart and Christopher Genovese
+ [Data Science Toolkit](https://benkeser.github.io/info550/lectures/) by David Benkeser
+ [What They Forgot to Teach You About R](https://rstats.wtf/index.html) by Jennifer Bryan and Jim Hester# Tutorial style guide
This repository now contains the following file naming and code style rules.
+ Folders are no longer ordered with a numerical prefix and names are no longer case sensitive e.g `r_tips\tutorials\...` and `r_tips\figures\...`
+ Tutorial subtopics share the same prefix e.g. `r_tips\tutorials\dv-...` and `r_tips\tutorials\st-...`
+ File names contain `-` to separate file name prefixes and `_` instead of other white space e.g. `r_tips\figures\dv-using_diagrammer-simple_flowchart.svg`
+ Comments are styled according to the [tidyverse style guide](https://style.tidyverse.org/functions.html?q=comments#comments-1):
+ The first comment explains the purpose of the code chunk and is styled differently for enhanced readability e.g. `# Code as header --------`
+ Comments are written in sentence case and only end with a full stop if they contain at least two sentences
+ Short comments explaining a function argument do not have to be written on a new line
+ Comments should not be followed by a blank line, unless the comment is a stand-alone paragraph containing in-depth rationale or an alternative solution
+ R code chunks are styled as follows:
+ Each R chunk should be named with a short unique description written in the active voice e.g. `create basic plot` and `modify plot labels`
+ Arguments inside code chunks should not contain white space and boolean argument options should be written in capitals e.g. `{r load libraries, message=FALSE, warning=FALSE}`
+ To render the github document, results are generally suppressed using `results='hide'` and manually entered in a new line beneath the code.
+ To render the github document, figures are generally outputed using `fig.show='markdown'` and figure outputs can then be suppressed at the local chunk level using `fig.show='hide'`
+ Set a margin of 80 characters length in RStudio through `Tools\Global options --> Code --> Display --> Show margin` and use this margin as the cut-off for code and comments length# Citations
Citing packages is a good practice when you are publishing research papers. To do this, use `citations("package")` to print the relevant package publication. A non-exhaustive list of R packages used in this repository is found below.
+ R Core Team (2021). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
+ Wickham et al., (2019). Welcome to the `tidyverse`. Journal of Open Source Software, 4(43),
1686, https://doi.org/10.21105/joss.01686
+ H. Wickham. `ggplot2`: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.
+ Matt Dowle and Arun Srinivasan (2021). `data.table`: Extension of `data.frame`. R package
version 1.14.2. https://CRAN.R-project.org/package=data.table# Acknowledgements
Many kudos to [Dr Chuanxin Liu](https://github.com/codetrainee), my former PhD student and code editor, for teaching me how to code in R in my past life as an immunologist.