An open API service indexing awesome lists of open source software.

https://github.com/ermongroup/spn_variational_inference

PyTorch implementation for "Probabilistic Circuits for Variational Inference in Discrete Graphical Models", NeurIPS 2020
https://github.com/ermongroup/spn_variational_inference

approximate-inference graphical-models probabilistic-circuits pytorch sum-product-networks variational-inference

Last synced: about 1 month ago
JSON representation

PyTorch implementation for "Probabilistic Circuits for Variational Inference in Discrete Graphical Models", NeurIPS 2020

Awesome Lists containing this project

README

          

This repository contains code for the paper:

[Probabilistic Circuits for Variational Inference in Discrete Graphical Models](https://arxiv.org/abs/2010.11446)

```
"Probabilistic Circuits for Variational Inference in Discrete Graphical Models"
Andy Shih, Stefano Ermon
In Proceedings of the 34th Conference on Neural Information Processing Systems (NeurIPS), 2020

@inproceedings{ShihEneurips20,
author = {Andy Shih and Stefano Ermon},
title = {Probabilistic Circuits for Variational Inference in Discrete Graphical Models},
booktitle = {Advances in Neural Information Processing Systems 33 (NeurIPS)},
month = {december},
year = {2020},
}
```

Here are commands for running the experiments:

## Ising Models
```
python runising.py --loadgm=1000 --run=123 --mode=2 --n=4
python runising.py --loadgm=1000 --run=123 --mode=1 --n=8
python runising.py --loadgm=1000 --run=123 --mode=1 --n=16
python runising.py --loadgm=1000 --run=123 --mode=1 --n=32
```
, and repeat with loadgm=[1001,1002,1003].

## UAI Inference Competition
```
python runuai.py --run=123
```

## Contact
For questions, contact us at:

andyshih at cs dot stanford dot edu