Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ermongroup/tile2vec
Implementation and examples for Tile2Vec
https://github.com/ermongroup/tile2vec
Last synced: 9 days ago
JSON representation
Implementation and examples for Tile2Vec
- Host: GitHub
- URL: https://github.com/ermongroup/tile2vec
- Owner: ermongroup
- License: mit
- Created: 2018-02-12T08:37:44.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2024-01-25T17:25:10.000Z (9 months ago)
- Last Synced: 2024-07-31T20:49:52.760Z (3 months ago)
- Language: Python
- Homepage: https://arxiv.org/abs/1805.02855
- Size: 8.62 MB
- Stars: 111
- Watchers: 12
- Forks: 39
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# tile2vec
Implementation and examples for Tile2Vec## Getting data
Follow the follow instructions for getting the necessary data for the provided examples.
### Getting pre-trained NAIP model
To get a Tile2Vec model that has been pre-trained on the NAIP dataset, download the weights provided [here](https://www.dropbox.com/s/bvzriiqlcof5lol/naip_trained.ckpt?dl=0) and save the file in the models directory: `tile2vec/models/naip_trained.ckpt`.
### Getting tiles
Unzip `data/tiles.zip` in the data directory, i.e., `tile2vec/data/tiles`. Within this folder, you should find 1000 tiles saved as Numpy arrays named `{1-1000}tile.npy` and 1 file named `y.npy` that contains the CDL labels corresponding to these 1000 tiles.### Getting triplets
Download tile triplet dataset for the training example [here](https://www.dropbox.com/s/afw3cbvo7sjerru/triplets.zip?dl=0) and then unzip in the data directory, i.e., `tile2vec/data/triplets`. This directory contains 100k tile triplets, with each triplet identified by its index and "anchor", "neighbor", or "distant".