Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/eruffaldi/pylivestat
Python package to compute running descriptive statistics over data
https://github.com/eruffaldi/pylivestat
python statistics
Last synced: 3 months ago
JSON representation
Python package to compute running descriptive statistics over data
- Host: GitHub
- URL: https://github.com/eruffaldi/pylivestat
- Owner: eruffaldi
- License: apache-2.0
- Created: 2013-12-31T09:19:48.000Z (almost 11 years ago)
- Default Branch: master
- Last Pushed: 2017-06-15T10:56:11.000Z (over 7 years ago)
- Last Synced: 2024-07-06T22:22:25.191Z (4 months ago)
- Topics: python, statistics
- Language: Python
- Homepage:
- Size: 53.7 KB
- Stars: 2
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# livestat
![livestat](icon.png)
Python module to compute running statistics over data, like when measuring timings from a stream.
Properties:
- count
- min,max,mean
- std and variance
- kurtosis and skewness
- merge of two livestats preserving statistics
- arithmetic operation over stat: + - * /
- standardization of the stat: uses mean and std to compute offset and scaling and then applies to the data updating the other statistics
- minmax normalization to [0,1]: uses mean and std to compute offset and scaling and then applies to the data updating the other statisticsNormality tests:
- jarque_bera
- kurtosis and skewnessThe main class is LiveStat to which data can be appended with append(x). For incremental values the DeltaLiveStat provides an easy to use helper.
Usage:
from livestat import LiveStat,DeltaLiveStat
x = LiveStat("optionalname")
x.append(10)
x.append(20)
print x # count is 2x = DeltaLiveStat("dt")
x.append(10)
x.append(20)
print x # count is 1 containing the difference#also from array
x.extend([10,20,30,40,50])Extra Features:
# the LiveStat objects can be combined for example when performing over different data Windows or in a multiprocessing environment
x.merge(y) # now x contains the merge of the statistics# the LiveStat object can be multipled by scalar or translated, for the objective of performing some unit transformation. All the measures are transformed appropriately
x + 5
x * 5Planned
=======- numpy support for fast forwarding append, and for vectorial statistics
Package Repository
==================
This project is maintained here: https://github.com/eruffaldi/pylivestatRelated
===========
The faststat package is similar:https://pypi.python.org/pypi/faststat/
https://github.com/doublereedkurt/faststat/
More sophisticated features can be found in scipy.stats
https://docs.scipy.org/doc/scipy-0.14.0/reference/tutorial/stats.html