Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/esafak/mca
Multiple correspondence analysis
https://github.com/esafak/mca
statistics
Last synced: about 2 months ago
JSON representation
Multiple correspondence analysis
- Host: GitHub
- URL: https://github.com/esafak/mca
- Owner: esafak
- License: bsd-3-clause
- Created: 2014-06-05T05:12:04.000Z (over 10 years ago)
- Default Branch: master
- Last Pushed: 2022-12-26T22:36:46.000Z (about 2 years ago)
- Last Synced: 2024-11-09T13:20:17.001Z (2 months ago)
- Topics: statistics
- Language: Python
- Size: 123 KB
- Stars: 179
- Watchers: 16
- Forks: 73
- Open Issues: 3
-
Metadata Files:
- Readme: README.rst
- Changelog: HISTORY.rst
- Contributing: CONTRIBUTING.rst
- License: LICENSE
Awesome Lists containing this project
README
===============================
mca
===============================.. image:: https://badge.fury.io/py/mca.png
:target: http://badge.fury.io/py/mca
.. image:: https://travis-ci.org/esafak/mca.png?branch=master
:target: https://travis-ci.org/esafak/mcamca is a `Multiple Correspondence Analysis `_ (MCA) package for python, intended to be used with `pandas `_. MCA is a `feature extraction `_ method; essentially `PCA `_ for `categorical variables `_. You can use it, for example, to address `multicollinearity `_ or the `curse of dimensionality `_ with big categorical variables.
Installation
------------.. code :: bash
pip install --user mca
Usage
------------------Please refer to the `usage notes `_ and `this illustrated ipython notebook `_.
Reference
---------Michael Greenacre, Jörg Blasius (2006). `Multiple Correspondence Analysis and Related Methods `_, CRC Press. ISBN 1584886285.