An open API service indexing awesome lists of open source software.

https://github.com/ethanjameslew/autokoopman

AutoKoopman - automated Koopman operator methods for data-driven dynamical systems analysis and control.
https://github.com/ethanjameslew/autokoopman

autoencoders data-driven-dynamics deep-learning dynamic-mode-decomposition dynamical-systems koopman koopman-operators reachability sindy system-identification

Last synced: 4 months ago
JSON representation

AutoKoopman - automated Koopman operator methods for data-driven dynamical systems analysis and control.

Awesome Lists containing this project

README

          

[![PyPI version](https://badge.fury.io/py/autokoopman.svg)](https://badge.fury.io/py/autokoopman)
[![license](https://img.shields.io/github/license/EthanJamesLew/AutoKoopman)](LICENSE)
[![Conda CI Workflow](https://github.com/EthanJamesLew/AutoKoopman/actions/workflows/python-package-conda.yml/badge.svg)](https://github.com/EthanJamesLew/AutoKoopman/actions/workflows/python-package-conda.yml)
[![Sphinx Workflow](https://github.com/EthanJamesLew/AutoKoopman/actions/workflows/documentation.yml/badge.svg)](https://github.com/EthanJamesLew/AutoKoopman/actions/workflows/documentation.yml)
[![Jupyter Workflow](https://github.com/EthanJamesLew/AutoKoopman/actions/workflows/notebook.yml/badge.svg)](https://github.com/EthanJamesLew/AutoKoopman/actions/workflows/notebook.yml)

![](https://raw.githubusercontent.com/EthanJamesLew/AutoKoopman/enhancement/v-0.30-tweaks/documentation/img/brand/logo-full.svg)

# AutoKoopman

## Overview

AutoKoopman is a high-level system identification tool that automatically optimizes all hyper-parameters to estimate accurate system models with globally linearized representations. Implemented as a python library under shared class interfaces, AutoKoopman uses a collection of Koopman-based algorithms centered on conventional dynamic mode decomposition and deep learning. Koopman theory relies on embedding system states to *observables*; AutoKoopman provides major types of static observables.

The library supports
* Discrete-Time and Continuous-Time System Identification
* Extended Dynamic Mode Decomposition (EDMD) [[Williams et al.]](#1)
* Deep Koopman [[Li et al.]](#2)
* SINDy [[Brunton et al.]](#3)
* Static Observables
* Random Fourier Features [[Bak et al.]](#4)
* Polynomial
* Neural Network [[Li et al.]](#2)
* System Identification with Input and Control
* Koopman with Input and Control (KIC) [[Proctor et al.]](#5)
* Online (Streaming) System Identification
* Online DMD [[Zhang et al.]](#6)
* Hyperparameter Optimization
* Random Search
* Grid Search
* Bayesian Optimization

## Use Cases
The library is intended for a systems engineer / researcher who wishes to leverage data-driven dynamical systems techniques. The user may have measurements of their system with no prior model.

* **Prediction:** Predict the evolution of a system over long time horizons
* **Control:** Synthesize control signals that achieve desired closed-loop behaviors and are optimal with respect to some objective.
* **Verification:** Prove or falsify the safety requirements of a system.

## Installation

The module is published on [PyPI](https://pypi.org/project/autokoopman/). It requires python 3.8 or higher. With pip installed, run
```shell
pip install autokoopman
```
at the repo root. Run
```shell
python -c "import autokoopman"
```
to ensure that the module can be imported.

## Examples

### A Complete Example
AutoKoopman has a convenience function `auto_koopman` that can learn dynamical systems from data in one call, given
training data of trajectories (list of arrays),
```python
import matplotlib.pyplot as plt
import numpy as np

# this is the convenience function
from autokoopman import auto_koopman

np.random.seed(20)

# for a complete example, let's create an example dataset using an included benchmark system
import autokoopman.benchmark.fhn as fhn
fhn = fhn.FitzHughNagumo()
training_data = fhn.solve_ivps(
initial_states=np.random.uniform(low=-2.0, high=2.0, size=(10, 2)),
tspan=[0.0, 10.0],
sampling_period=0.1
)

# learn model from data
experiment_results = auto_koopman(
training_data, # list of trajectories
sampling_period=0.1, # sampling period of trajectory snapshots
obs_type="rff", # use Random Fourier Features Observables
opt="grid", # grid search to find best hyperparameters
n_obs=200, # maximum number of observables to try
max_opt_iter=200, # maximum number of optimization iterations
grid_param_slices=5, # for grid search, number of slices for each parameter
n_splits=5, # k-folds validation for tuning, helps stabilize the scoring
rank=(1, 200, 40) # rank range (start, stop, step) DMD hyperparameter
)

# get the model from the experiment results
model = experiment_results['tuned_model']

# simulate using the learned model
iv = [0.5, 0.1]
trajectory = model.solve_ivp(
initial_state=iv,
tspan=(0.0, 10.0),
sampling_period=0.1
)

# simulate the ground truth for comparison
true_trajectory = fhn.solve_ivp(
initial_state=iv,
tspan=(0.0, 10.0),
sampling_period=0.1
)

# plot the results
plt.plot(*trajectory.states.T)
plt.plot(*true_trajectory.states.T)
```

## Architecture

The library architecture has a modular design, allowing users to implement custom modules and plug them into the learning pipeline with ease.

![Library Architecture](https://github.com/EthanJamesLew/AutoKoopman/raw/enhancement/v-0.30-tweaks/documentation/img/autokoopman_objects.png)
*AutoKoopman Class Structure in the Training Pipeline*. A user can implement any of the classes to extend AutoKoopman (e.g., custom observables, a custom tuner, a new system id estimator).

## Documentation

See the
[AutoKoopman Documentation](https://ethanjameslew.github.io/AutoKoopman/).

## Citing AutoKoopman

AutoKoopman has been published as a tool paper at ATVA 2023. The preprint can be found [here](https://www.researchgate.net/profile/Ethan-Lew/publication/374805680_AutoKoopman_A_Toolbox_for_Automated_System_Identification_via_Koopman_Operator_Linearization/links/6537cf9f1d6e8a70704c7f31/AutoKoopman-A-Toolbox-for-Automated-System-Identification-via-Koopman-Operator-Linearization.pdf).

If you cite AutoKoopman, please cite

Lew, E., Hekal, A., Potomkin, K., Kochdumper, N., Hencey, B., Bak, S., & Bogomolov, S. (2023, October). Autokoopman: A toolbox for automated system identification via koopman operator linearization. In International Symposium on Automated Technology for Verification and Analysis (pp. 237-250). Cham: Springer Nature Switzerland.

Bibtex:
```
@inproceedings{lew2023autokoopman,
title={Autokoopman: A toolbox for automated system identification via koopman operator linearization},
author={Lew, Ethan and Hekal, Abdelrahman and Potomkin, Kostiantyn and Kochdumper, Niklas and Hencey, Brandon and Bak, Stanley and Bogomolov, Sergiy},
booktitle={International Symposium on Automated Technology for Verification and Analysis},
pages={237--250},
year={2023},
organization={Springer}
}
```

## References

[1] Williams, M. O., Kevrekidis, I. G., & Rowley, C. W. (2015). A data–driven approximation of the koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science, 25, 1307-1346.

[2] Li, Y., He, H., Wu, J., Katabi, D., & Torralba, A. (2019). Learning compositional koopman operators for model-based control. arXiv preprint arXiv:1910.08264.

[3] Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of sciences, 113(15), 3932-3937.

[4] Bak, S., Bogomolov, S., Hencey, B., Kochdumper, N., Lew, E., & Potomkin, K. (2022, August). Reachability of Koopman linearized systems using random fourier feature observables and polynomial zonotope refinement. In Computer Aided Verification: 34th International Conference, CAV 2022, Haifa, Israel, August 7–10, 2022, Proceedings, Part I (pp. 490-510). Cham: Springer International Publishing.

[5] Proctor, J. L., Brunton, S. L., & Kutz, J. N. (2018). Generalizing Koopman theory to allow for inputs and control. SIAM Journal on Applied Dynamical Systems, 17(1), 909-930.

[6] Zhang, H., Rowley, C. W., Deem, E. A., & Cattafesta, L. N. (2019). Online dynamic mode decomposition for time-varying systems. SIAM Journal on Applied Dynamical Systems, 18(3), 1586-1609.