Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/eurobios-mews-labs/survival-trees


https://github.com/eurobios-mews-labs/survival-trees

Last synced: 2 months ago
JSON representation

Awesome Lists containing this project

README

        

# LTRC Survival Forest

Alternative text

### Install notice

To install the package you can run

```shell
python -m pip install git+https://eurobios-mews-labs/survival-trees.git
```

### Usage

```python
import numpy as np
from survival_trees import RandomForestLTRCFitter
from survival_trees.metric import time_dependent_auc
from lifelines import datasets
from sklearn.model_selection import train_test_split

# load dataset
data = datasets.load_larynx().dropna()
data["entry_date"] = data["age"]
data["time"] += data["entry_date"]
y = data[["entry_date", "time", "death"]]
X = data.drop(columns=y.columns.tolist())

# split dataset
x_train, x_test, y_train, y_test = train_test_split(
X, y, train_size=0.7)

# initialise and fit model
model = RandomForestLTRCFitter(
n_estimators=30,
min_impurity_decrease=0.0000001,
min_samples_leaf=3,
max_samples=0.89)
model.fit(
data.loc[x_train.index],
entry_col="entry_date",
duration_col="time",
event_col='death'
)

survival_function = - np.log(model.predict_cumulative_hazard(
x_test).astype(float)).T

auc_cd = time_dependent_auc(
- survival_function,
event_observed=y_test.loc[survival_function.index].iloc[:, 2],
censoring_time=y_test.loc[survival_function.index].iloc[:, 1])

```

## Benchmark

![benchmark](public/benchmark.png)

## References

* https://academic.oup.com/biostatistics/article/18/2/352/2739324

## Requirements

Having `R` compiler installed

## Project

This implementation come from an SNCF DTIPG project and is developped and maintained by Eurobios Scientific Computation
Branch and SNCF IR

drawing

drawing

## Authors

- Vincent LAURENT