An open API service indexing awesome lists of open source software.

https://github.com/evalclass/precrec

An R library for accurate and fast calculations of Precision-Recall and ROC curves
https://github.com/evalclass/precrec

Last synced: 5 months ago
JSON representation

An R library for accurate and fast calculations of Precision-Recall and ROC curves

Awesome Lists containing this project

README

        

---
output:
github_document
---

# Precrec

[![R-CMD-check](https://github.com/evalclass/precrec/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/evalclass/precrec/actions/workflows/R-CMD-check.yaml)
[![AppVeyor Build Status](https://ci.appveyor.com/api/projects/status/github/evalclass/precrec?branch=main&svg=true)](https://ci.appveyor.com/project/takayasaito/precrec/)
[![codecov.io](https://codecov.io/github/evalclass/precrec/coverage.svg?branch=main)](https://app.codecov.io/github/evalclass/precrec?branch=main)
[![CodeFactor](https://www.codefactor.io/repository/github/evalclass/precrec/badge)](https://www.codefactor.io/repository/github/evalclass/precrec/)
[![CRAN_Status_Badge](https://www.r-pkg.org/badges/version-ago/precrec)](https://cran.r-project.org/package=precrec)
[![CRAN_Logs_Badge](https://cranlogs.r-pkg.org/badges/grand-total/precrec)](https://cran.r-project.org/package=precrec)

The aim of the `precrec` package is to provide an integrated platform that enables robust performance evaluations of binary classifiers. Specifically, `precrec` offers accurate calculations of ROC (Receiver Operator Characteristics) and precision-recall curves. All the main calculations of `precrec` are implemented with C++/[Rcpp](https://cran.r-project.org/package=Rcpp).

## Documentation
- [Package website](https://evalclass.github.io/precrec/) -- GitHub pages that contain all precrec documentation.

- [Introduction to precrec](https://evalclass.github.io/precrec/articles/introduction.html) -- a package vignette that contains the descriptions of the functions with several useful examples. View the vignette with `vignette("introduction", package = "precrec")` in R. The HTML version is also available on the [GitHub Pages](https://evalclass.github.io/precrec/articles/introduction.html).

- [Help pages](https://evalclass.github.io/precrec/reference/) -- all the functions including the S3 generics except for `print` have their own help pages with plenty of examples. View the main help page with `help(package = "precrec")` in R. The HTML version is also available on the [GitHub Pages](https://evalclass.github.io/precrec/reference/).

## Six key features of precrec

### 1. Accurate curve calculations
`precrec` provides accurate precision-recall curves.

- Non-linear interpolation
- Elongation to the y-axis to estimate the first point when necessary
- Use of score-wise threshold values instead of fixed bins

`precrec` also calculates AUC scores with high accuracy.

### 2. Super fast
`precrec` calculates curves in a matter of seconds even for a fairly large dataset. It is much faster than most other tools that calculate ROC and precision-recall curves.

### 3. Various evaluation metrics
In addition to precision-recall and ROC curves, `precrec` offers basic evaluation measures.

- Error rate
- Accuracy
- Specificity
- Sensitivity, true positive rate (TPR), recall
- Precision, positive predictive value (PPV)
- Matthews correlation coefficient
- F\-score

### 4. Confidence interval band
`precrec` calculates confidence intervals when multiple test sets are given. It automatically shows confidence bands about the averaged curve in the
corresponding plot.

### 5. Calculation of partial AUCs and visualization of partial curves
`precrec` calculates partial AUCs for specified x and y ranges. It can also
draw partial ROC and precision-recall curves for the specified ranges.

### 6. Supporting functions
`precrec` provides several useful functions that lack in most other evaluation tools.

- Handling multiple models and multiple test sets
- Handling tied scores and missing scores
- Pre- and post-process functions of simple data preparation and curve analysis

## Installation

* Install the release version of `precrec` from CRAN with `install.packages("precrec")`.

* Alternatively, you can install a development version of `precrec` from [our GitHub repository](https://github.com/evalclass/precrec/). To install it:

1. Make sure you have a working development environment.
* **Windows**: Install Rtools (available on the CRAN website).
* **Mac**: Install Xcode from the Mac App Store.
* **Linux**: Install a compiler and various development libraries (details vary across different flavors of Linux).

2. Install `devtools` from CRAN with `install.packages("devtools")`.

3. Install `precrec` from the GitHub repository with `devtools::install_github("evalclass/precrec")`.

## Functions
The `precrec` package provides the following six functions.

Function Description
------------------ -----------------------------------------------------------
evalmod Main function to calculate evaluation measures
mmdata Reformat input data for performance evaluation calculation
join_scores Join scores of multiple models into a list
join_labels Join observed labels of multiple test datasets into a list
create_sim_samples Create random samples for simulations
format_nfold Create n-fold cross validation dataset from data frame

Moreover, the `precrec` package provides nine S3 generics for the S3 object created by the `evalmod` function. **N.B.** The R language specifies S3 objects and S3 generic functions as part of the most basic object-oriented system in R.

S3 generic Package Description
--------------- -------- ------------------------------------------------------------------
print base Print the calculation results and the summary of the test data
as.data.frame base Convert a precrec object to a data frame
plot graphics Plot performance evaluation measures
autoplot ggplot2 Plot performance evaluation measures with ggplot2
fortify ggplot2 Prepare a data frame for ggplot2
auc precrec Make a data frame with AUC scores
part precrec Calculate partial curves and partial AUC scores
pauc precrec Make a data frame with pAUC scores
auc_ci precrec Calculate confidence intervals of AUC scores

## Examples

Following two examples show the basic usage of `precrec` functions.

### ROC and Precision-Recall calculations

The `evalmod` function calculates ROC and Precision-Recall curves and returns an S3 object.
```{r}
library(precrec)

# Load a test dataset
data(P10N10)

# Calculate ROC and Precision-Recall curves
sscurves <- evalmod(scores = P10N10$scores, labels = P10N10$labels)
```

### Visualization of the curves

The `autoplot` function outputs ROC and Precision-Recall curves by using the
`ggplot2` package.
```{r, fig.show='hide'}
# The ggplot2 package is required
library(ggplot2)

# Show ROC and Precision-Recall plots
autoplot(sscurves)
```

![](https://raw.githubusercontent.com/evalclass/precrec/main/README_files/figure-gfm/unnamed-chunk-2-1.png)

## Citation
*Precrec: fast and accurate precision-recall and ROC curve calculations in R*

Takaya Saito; Marc Rehmsmeier

Bioinformatics 2017; 33 (1): 145-147.

doi: [10.1093/bioinformatics/btw570](https://doi.org/10.1093/bioinformatics/btw570)

## External links
- [Classifier evaluation with imbalanced datasets](https://classeval.wordpress.com/) - our web site that contains several pages with useful tips for performance evaluation on binary classifiers.

- [The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets](https://doi.org/10.1371/journal.pone.0118432) - our paper that summarized potential pitfalls of ROC plots with imbalanced datasets and advantages of using precision-recall plots instead.

```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "README-"
)
```