Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/evamaerey/ggxmean


https://github.com/evamaerey/ggxmean

Last synced: 11 days ago
JSON representation

Awesome Lists containing this project

README

        

---
output: github_document
---

![](https://images.unsplash.com/photo-1572291720677-d8d28ac52a5b?ixid=MXwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHw%3D&ixlib=rb-1.2.1&auto=format&fit=crop&w=1556&q=80)

```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%",
warning = F,
message = F
)
```

# ggxmean

The goal of ggxmean is plot the mean of x - and some other things like y!

## Installation

The development version from [GitHub](https://github.com/) with:

``` r
# install.packages("devtools")
devtools::install_github("EvaMaeRey/ggxmean")
```

- [In-progress long form rationale and package exploration](https://evamaerey.github.io/ggxmean/manuscript.pdf)

- [Talk MAA Metro NY](https://evamaerey.github.io/ggxmean/talk_maa_metro_ny.html)

## Examples

Open flipbook in a new tab

```{r, eval = F, echo = F}
file.copy("inst/rmarkdown/templates/template-name/skeleton/skeleton.Rmd",
"docs/flipbook.Rmd", overwrite = T)

# Dont use, path's aren't relative. xaringanBuilder::build_html("docs/flipbook.Rmd")
xaringanBuilder::build_gif("docs/flipbook_preview.html", fps = 4)
knitr::opts_chunk$set(echo = F, eval = F)
```

```{r example}
# knitr::opts_chunk$set(eval = F)
options(gganimate.nframes = 60)
library(tidyverse)
library(ggxmean)
#library(transformr) might help w/ animate

## basic example code
cars %>%
ggplot() +
aes(x = speed,
y = dist) +
geom_point() +
ggxmean::geom_x_mean() +
ggxmean::geom_x_mean_label() +
ggxmean::geom_y_mean() +
ggxmean::geom_xy_means(color = "red",
size = 5) +
ggxmean::geom_lm_fitted(color = "goldenrod3",
size = 3) +
ggxmean::geom_lm_pred_int() +
ggxmean::geom_lm() +
ggxmean::geom_lm_residuals(linetype = "dashed") +
ggxmean::geom_lm_conf_int() +
ggxmean::geom_lm_formula()
```

---

```{r}
palmerpenguins::penguins %>%
ggplot() +
aes(x = bill_length_mm) +
geom_rug(alpha = .3) +
geom_histogram(alpha = .4) +
geom_x_mean() +
aes(fill = species) + # unexpected behavior here
aes(color = species) +
facet_wrap(facets = vars(species)) +
gganimate::transition_layers()
```

```{r}
library(ggxmean)
palmerpenguins::penguins %>%
drop_na() %>%
ggplot() +
aes(x = bill_length_mm) +
aes(y = flipper_length_mm) +
geom_point() +
ggxmean:::geom_x_mean() +
ggxmean:::geom_y_mean() +
ggxmean:::geom_y_line(alpha = .2) +
ggxmean:::geom_x_line(alpha = .2) +
ggxmean:::geom_xdiff() +
ggxmean:::geom_ydiff() +
ggxmean:::geom_x1sd(linetype = "dashed") +
ggxmean:::geom_y1sd(linetype = "dashed") +
ggxmean:::geom_diffsmultiplied() +
ggxmean:::geom_xydiffsmean(alpha = 1) +
ggxmean:::geom_rsq1() +
ggxmean:::geom_corrlabel() +
gganimate::transition_layers()
```