Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/eveningdong/DAOSL
Implementation of Domain Adaption in One-Shot Learning
https://github.com/eveningdong/DAOSL
domain-adaptation one-shot-learning reinforcement-learning slim tensorflow
Last synced: about 2 months ago
JSON representation
Implementation of Domain Adaption in One-Shot Learning
- Host: GitHub
- URL: https://github.com/eveningdong/DAOSL
- Owner: eveningdong
- Created: 2018-11-12T03:40:56.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2019-03-11T03:56:21.000Z (almost 6 years ago)
- Last Synced: 2024-08-10T07:01:17.127Z (4 months ago)
- Topics: domain-adaptation, one-shot-learning, reinforcement-learning, slim, tensorflow
- Language: Python
- Homepage:
- Size: 13.9 MB
- Stars: 15
- Watchers: 2
- Forks: 6
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-few-shot-meta-learning - code - official (TF)
README
# Domain Adaption in One-Shot Learning
Implementation of Domain Adaption in One-Shot Learning.
## Paper
You can find our paper at [Springer](https://link.springer.com/chapter/10.1007/978-3-030-10925-7_35) or [PDF](https://github.com/NanqingD/DAOSL/blob/master/ECML_2018_Camera_Ready_Final.pdf).## Citation
If you find DAOSL useful in your research, please consider to cite:@inproceedings{dong2018domain,
title={Domain adaption in one-shot learning},
author={Dong, Nanqing and Eric P. Xing},
booktitle={Joint European Conference on Machine Learning and Knowledge Discovery in Databases},
pages={573--588},
year={2018},
organization={Springer}
}## Setup
### Requirements
```
python 3.5
tensorflow 1.8
CUDA 9.0
cuDNN 7.0
```### Installation
```
sh setup.sh
```## Training
Train one-shot classifier for 5-way 1-shot learning.
```
python3 convert_data.py --data-name=omniglot
python3 convert_data.py --data-name=emnist --num-target-examples=20
python3 train_one_shot.py --exp-name=one_shot --source=omniglot --target=emnist_20 --num-ways=5
```Train adversarial domain adaption (ADA) for 5-way 1-shot learning.
```
python3 convert_data.py --data-name=omniglot
python3 convert_data.py --data-name=emnist --num-target-examples=20
python3 train_ada.py --exp-name=ada --source=omniglot --target=emnist_20 --num-ways=5 --la=0.001
```Train adversarial domain adaption (ADA) with reinforced sample selection (RSS) for 5-way 1-shot learning.
```
python3 convert_data.py --data-name=chars
python3 convert_data.py --data-name=sim
python3 convert_data.py --data-name=dis
python3 train_rss.py --exp-name=rss --num-ways=5 --la=0.001 --gamma=0.1
```