An open API service indexing awesome lists of open source software.

https://github.com/evgenyneu/tarpan

Python functions for analysing cmdspanpy output
https://github.com/evgenyneu/tarpan

Last synced: 5 months ago
JSON representation

Python functions for analysing cmdspanpy output

Awesome Lists containing this project

README

        

# A Python library for analysing cmdstanpy output

This is a collection of functions for analysing output of [cmdstanpy](https://github.com/stan-dev/cmdstanpy) library. The main idea is to do a quick data analysis by calling a single function that makes:

* traceplots of samples,

* text and plots of the summaries of model parameters,

* histograms and pair plots of posterior distributions of parameters.

Picture of Tarpan

*The only known illustration of a tarpan made from life, depicting a five month old colt (Borisov, 1841). Source: [Wikimedia Commons](https://commons.wikimedia.org/wiki/File:Tarpan.png).*

## Setup

First, run:

```
pip install tarpan
```

Finally, install [cmdstan](https://github.com/stan-dev/cmdstan) by running:

```
install_cmdstan
```

## Complete analysis: `save_analysis`

This is the main function of the library that saves summaries
and trace/pair/tree plots in
[model_info](https://github.com/evgenyneu/tarpan/tree/master/docs/examples/analyse/a01_simple/model_info/analyse) directory.
The function is useful when you want to generate all types of summaries
and plots at once.

```Python
from tarpan.cmdstanpy.analyse import save_analysis

model = CmdStanModel(stan_file="your_model.stan")
fit = model.sample(data=your_data)
save_analysis(fit, param_names=['mu', 'sigma'])
```

* [Full example code](https://github.com/evgenyneu/tarpan/tree/master/docs/examples/analyse/a01_simple)

If you don't need everything, you can call individual
functions described below to make just one type of plot or a summary.

### Analysis without cmdstanpy

Here is how to analyse values from Pandas' data frame columns:

```Python
from tarpan.shared.analyse import save_analysis
save_analysis(df, param_names=['mu', 'sigma'])
```

* [Full example code](https://github.com/evgenyneu/tarpan/tree/master/docs/examples/analyse/a02_no_cmdstanpy)

## Summary: `save_summary`

Creates a summary of parameter distributions and saves it in text and CSV files.

```Python
from tarpan.cmdstanpy.summary import save_summary

model = CmdStanModel(stan_file="your_model.stan")
fit = model.sample(data=your_data)
save_summary(fit, param_names=['mu', 'tau', 'eta.1'])
```

* [Full example code](https://github.com/evgenyneu/tarpan/tree/master/docs/examples/save_summary/a01_save_summary)

* Call `print_summary` to print summary to console instead of saving to a file.

The text summary format is such that the text can be pasted into Github/Gitlab/Bitbucket's Markdown file, like this:

| Name | Mean | Std | Mode | + | - | 68CI- | 68CI+ | 95CI- | 95CI+ | N_Eff | R_hat |
|:-------|-------:|------:|-------:|-----:|-----:|--------:|--------:|--------:|--------:|--------:|--------:|
| mu | 8.05 | 5.12 | 7.53 | 4.63 | 4.59 | 2.93 | 12.16 | -1.84 | 18.74 | 1540 | 1.00 |
| tau | 6.41 | 5.72 | 2.36 | 5.41 | 2.35 | 0.00 | 7.76 | 0.00 | 17.07 | 1175 | 1.00 |
| eta.1 | 0.39 | 0.92 | 0.60 | 0.71 | 1.13 | -0.53 | 1.31 | -1.48 | 2.19 | 3505 | 1.00 |

### Summary columns

* **Name, Mean, Std** are the name of the parameter, its mean and standard deviation.

* **68CI-, 68CI+, 95CI-, 95CI+** are the 68% and 95% HPDIs (highest posterior density intervals). These values [are configurable](https://github.com/evgenyneu/tarpan/blob/master/docs/hpdi.md).

* **Mode, +, -** is a mode of distribution with upper and lower uncertainties, which are calculated as distances to 68% HPDI.

* **N_Eff** is Stan's number of effective samples, the higher the better.

* **R_hat** is a Stan's parameter representing the quality of the sampling. This value needs to be around 1.00. After generating a model I usually immediately look at this R_hat column to see if the sampling was good.

### Summary without cmdstanpy

Here is how to make summary of values from Pandas' data frame columns:

```Python
from tarpan.shared.summary import save_summary
save_summary(df, param_names=['mu', 'sigma'])
```

* [Full example code](https://github.com/evgenyneu/tarpan/tree/master/docs/examples/save_summary/a03_no_cmdstanpy)

## Tree plot: `save_tree_plot`

This function shows exactly the same information as `save_summary`, but in
the form of a plot. The markers are the modes of the distributions, and the two error bars
indicate 68% and 95% HPDIs (highest posterior density intervals).

```Python
from tarpan.cmdstanpy.tree_plot import save_tree_plot

model = CmdStanModel(stan_file="your_model.stan")
fit = model.sample(data=your_data)
save_tree_plot([fit], param_names=['mu', 'sigma'])
```

* [Full example code](https://github.com/evgenyneu/tarpan/tree/master/docs/examples/save_tree_plot/a01_single_fit)

Tree plot

### Tree plot without cmdstanpy

One can make a tree plot by supplying a Panda's data frame that shows summaries of values for the frame's columns:

```Python
from tarpan.shared.tree_plot import save_tree_plot
save_tree_plot([df], param_names=['mu', 'sigma'])
```

* [Full example code](https://github.com/evgenyneu/tarpan/tree/master/docs/examples/save_tree_plot/a04_no_cmdstanpy)

### Comparing multiple models on a tree plot

Supply multiple fits in order to compare parameters from multiple models.

```Python
from tarpan.cmdstanpy.tree_plot import save_tree_plot
from tarpan.shared.tree_plot import TreePlotParams

# Sample from two models
model1 = CmdStanModel(stan_file="your_model1.stan")
fit1 = model1.sample(data=your_data)
model2 = CmdStanModel(stan_file="your_model2.stan")
fit2 = model2.sample(data=your_data)

# Supply legend labels (optional)
tree_params = TreePlotParams()
tree_params.labels = ["Model 1", "Model 2", "Exact"]
data = [{"mu": 2.2, "tau": 1.3}] # Add extra markers (optional)

save_tree_plot([fit1, fit2], extra_values=data, param_names=['mu', 'tau'],
tree_params=tree_params)
```

* [Full example code](https://github.com/evgenyneu/tarpan/tree/master/docs/examples/save_tree_plot/a02_compare_fits)

Tree plot with multiple models

## Comparing parameters of multiple models

Use `save_compare_parameters` function to compare parameters between different models:

| | mu | tau |
|---------------------:|--------------------:|--------------------:|
| Model 1 | 7.53 (+4.63, -4.59) | 2.36 (+5.41, -2.35) |
| Model 2 | 8.87 (+9.05, -9.50) | 3.64 (+8.14, -3.61) |

This table is a numerical version of the plot created by `save_tree_plot`. The values here are modes of the distributions and uncertainties are distances to 68% HPD intervals.

```Python
from tarpan.cmdstanpy.compare_parameters import save_compare_parameters
extra = [{"mu": 2.2, "theta": 1.3}] # Add extra values (optional)

save_compare_parameters([fit1, fit2], labels=['Model 1', 'Model 2', 'Extra'],
extra_values=extra,
param_names=["mu", "theta"])
```

* [Full example code](https://github.com/evgenyneu/tarpan/tree/master/docs/examples/save_compare_parameters/a01_save_compare_parameters)

### Use `save_compare_parameters` without cmdstanpy

Here is how to compare parameters using Pandas data frames df1 and df2:

```Python
from tarpan.shared.compare_parameters import save_compare_parameters
extra = [{"mu": 2.2, "theta": 1.3}] # Add extra values (optional)

save_compare_parameters([df1, df2], labels=['Model 1', 'Model 2', 'Extra'],
extra_values=extra,
param_names=["mu", "theta"])
```

* [Full example code](https://github.com/evgenyneu/tarpan/tree/master/docs/examples/save_compare_parameters/a02_no_cmdstanpy)

## Trace plot: `save_traceplot`

The plot shows the values of parameters samples.
Different colors correspond to samples form different chains. Ideally,
the lines of different colors on the left plots are well mixed, and the
right plot is fairly uniform.

```Python
from tarpan.cmdstanpy.traceplot import save_traceplot

model = CmdStanModel(stan_file="your_model.stan")
fit = model.sample(data=your_data)
save_traceplot(fit, param_names=['mu', 'tau', 'eta.1'])
```

* [Full example code](https://github.com/evgenyneu/tarpan/tree/master/docs/examples/save_traceplot/a01_save_traceplot)

Traceplot

## Pair plot: `save_pair_plot`

The plot helps to see correlations between parameters and spot funnel
shaped distributions that can result in sampling problems.

```Python
from tarpan.cmdstanpy.pair_plot import save_pair_plot
model = CmdStanModel(stan_file="your_model.stan")
fit = model.sample(data=your_data)
save_pair_plot(fit, param_names=['mu', 'tau', 'eta.1'])
```

* [Full example code](https://github.com/evgenyneu/tarpan/tree/master/docs/examples/save_pair_plot/a01_pair_plot)

Pair plot

### Pair plot without cmdstanpy

Here is how to make a pair plot of values from Pandas' data frame columns:

```Python
from tarpan.shared.pair_plot import save_pair_plot
save_pair_plot(df, param_names=['mu', 'sigma'])
```

* [Full example code](https://github.com/evgenyneu/tarpan/tree/master/docs/examples/save_pair_plot/a02_no_cmdstanpy)

## Histogram: `save_histogram`

Show histograms of parameter distributions.

```Python
from tarpan.cmdstanpy.histogram import save_histogram
model = CmdStanModel(stan_file="your_model.stan")
fit = model.sample(data=your_data)
save_histogram(fit, param_names=['mu', 'tau', 'eta.1', 'theta.1'])
```

* [Full example code](https://github.com/evgenyneu/tarpan/tree/master/docs/examples/save_histogram/a01_save_histogram)

Histogram

### Histogram without cmdstanpy

Here is how to make histograms of values from Pandas' data frame columns:

```Python
from tarpan.shared.histogram import save_histogram
save_histogram(df, param_names=['mu', 'sigma'])
```

* [Full example code](https://github.com/evgenyneu/tarpan/tree/master/docs/examples/save_histogram/a02_no_cmdstanpy)

## Comparing models

Run `save_compare` to compare multiple models using WAIC and PSIS methods in order to see which models are more compatible with the data.

```python
from tarpan.cmdstanpy.compare import save_compare

model1 = CmdStanModel(stan_file="your_model1.stan")
fit1 = model1.sample(data=your_data)
model2 = CmdStanModel(stan_file="your_model2.stan")
fit2 = model2.sample(data=your_data)

models = {
"Model": fit1,
"Another model": fit2
}

save_compare(models=models, lpd_column_name="lpd_pointwise")
```

Here the `lpd_column_name` parameter takes the name of the array variable from the [generated quantities](docs/examples/save_compare/a01_compare/stan_model/height1_intercept.stan) block that contains log probability densities of all data points.

* [Full example code](https://github.com/evgenyneu/tarpan/tree/master/docs/examples/save_compare/a01_compare)

### WAIC and PSIS plots

The `save_compare` function will create the plots showing WAIC and PSIS values (red round markers). The lower WAIC and PSIS values mean the model is more compatible with the data. The blue triangle marker shows the difference between the model and the best model. The error bars correspond to standard errors.

Compare models with WAIC

Compare models with PSIS

### Numerical summaries for WAIC and PSIS

The `save_compare` function will also create text and csv files which are text versions of the above plots.

Summary columns are:

* **PSIS/WAIC, SE**: PSIS and WAIC values and their standard errors.

* **dPSIS/dWAIC, dSE**: The difference of PSIS and WAIC from the best model (i.e. model with lowest WAIC/PSIS) and the standard error of this difference.

* **pWAIC/pPSIS**: the penalty (aka effective number of parameters). The purpose of number is
to combat overfitting. Penalties are already included in the WAIC/PSIS numbers, so models with too many parameters will have larger penalties, and therefore, larger WAIC/PSIS values.

* **Weight**: Very approximate measure of the relevance of the model, with higher numbers
correspond to models that are more compatible with the data. Since this number is approximate and does not have uncertainty, it's better to use dWAIC/dPSIS with dSE to compare models.

* **MaxK**: The maximum value of Pareto K parameter from the observations. If this value is above 0.5, and especially above 0.7, the PSIS/WAIC model comparisons might not be reliable.

#### WAIC summary

| | WAIC | SE | dWAIC | dSE | pWAIC | Weight |
|:-----------------|-------:|------:|--------:|------:|--------:|---------:|
| Fungus+treatment | 361.48 | 13.36 | | | 3.49 | 1.00 |
| Treatment | 402.68 | 10.66 | 41.20 | 9.82 | 2.53 | 0.00 |
| Intercept | 405.88 | 11.29 | 44.40 | 11.56 | 1.53 | 0.00 |

#### PSIS summary

| | PSIS | SE | dPSIS | dSE | pPSIS | MaxK | Weight |
|:-----------------|-------:|------:|--------:|------:|--------:|-------:|---------:|
| Fungus+treatment | 361.48 | 13.36 | | | 3.49 | 0.25 | 1.00 |
| Treatment | 402.69 | 10.67 | 41.21 | 9.82 | 2.54 | 0.33 | 0.00 |
| Intercept | 405.88 | 11.29 | 44.40 | 11.56 | 1.53 | 0.28 | 0.00 |

### Plots of Pareto K values

The `save_compare` function creates plots of Pareto K values for data points. Points with Pareto K values higher than 0.7 are highlighted in red, with their indices shown below the markers. The red points are the ones that have large influence on the model. Having points above 0.7 could mean that WAIC and PSIS are failing and their results should be used with caution and large neon coloured disclaimers.

Plot of Pareto K values

## Saving cmdstan samples to disk

It saves a lot of time to sample the model and save the results to disk, so
they can be used on the next run instead of waiting for the sampling again.
This can be done with `run` function:

```python
from tarpan.cmdstanpy.cache import run

# Your function that creates CmdStanModel, runs its `sample` method
# and returns the result.
#
# This function must take `output_dir` input parameter and pass it to `sample`.
#
# It may also have any other parameters you wish to pass from `run`.
def run_stan(output_dir, other_param):
model = CmdStanModel(stan_file="my_model.stan")

fit = model.sample(
data=data,
output_dir=output_dir # Pass to make CSVs in correct location
)

return fit # Return the fit

# Will run `run_stan` once, save model to disk and read it on next calls
fit = run(func=run_stan, other_param="some data")
```

* [Full example code](https://github.com/evgenyneu/tarpan/tree/master/docs/examples/run/a01_run)

## Scatter and KDE plot

The `save_scatter_and_kde` function saves a scatter and corresponding KDE (kernel density estimate) plot. The KDE plot takes into account uncertainties of individual values:

```python
from tarpan.plot.kde import save_scatter_and_kde

values1 = [
-0.99, -1.37, -1.38, -1.51, -1.29, -1.34, -1.50, -0.93, -0.83,
-1.46, -1.07, -1.28, -0.73]

uncertainties1 = [
0.12, 0.05, 0.11, 0.18, 0.03, 0.19, 0.18, 0.12, 0.19,
0.09, 0.11, 0.16, 0.08]

values2 = [
-1.22, -1.15, -0.97, -0.68, -0.37, -0.48, -0.73, -0.61, -1.32,
-0.62, -1.13, -0.65, -0.90, -1.29, -1.19, -0.54, -0.64, -0.45,
-1.21, -0.75, -0.66, -0.71, -0.61, -0.59, -1.07, -0.65, -0.59]

uncertainties2 = [
0.13, 0.14, 0.17, 0.07, 0.11, 0.12, 0.23, 0.05, 0.04,
0.30, 0.11, 0.13, 0.16, 0.03, 0.18, 0.20, 0.16, 0.16,
0.11, 0.09, 0.20, 0.10, 0.08, 0.04, 0.04, 0.23, 0.19]

save_scatter_and_kde(values=[values1, values2],
uncertainties=[uncertainties1, uncertainties2],
title="Sodium abundances in RGB stars of NGC 288",
xlabel="Sodium abundance [Na/H]",
ylabel=["Star number", "Probability density"],
legend_labels=["AGB", "RGB"])
```

Scatter-KDE plot

### `gaussian_kde` function

The function returns the values for a KDE plot, taking into account uncertainties of individual values:

```python
from tarpan.plot.kde import gaussian_kde
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 1, 100)
y = gaussian_kde(x, values, uncert)
plt.fill_between(x, y)
```

## Make posterior-scatter-kde plot

The `save_posterior_scatter_and_kde` function makes a scatter-KDE plots
of the data, same as `save_scatter_and_kde`. In addition, it plots
the posterior distributions.

```python
from tarpan.plot.posterior import save_posterior_scatter_and_kde

# Plot one sample from posterior distribution
def model_pdf(x, row):
mu = row['mu.1']
sigma = row['sigma']

return stats.norm.pdf(x, mu, sigma)

fig, axes = save_posterior_scatter_and_kde(
fits=[fit1, fit2], # Two models returned by model.sample function
pdf=model_pdf, # Function that plot posterior distribution
values=[data1["y"], data2["y"]],
uncertainties=[data1["uncertainties"], data2["uncertainties"]],
title="Sodium abundances in RGB stars of NGC 288",
xlabel="Sodium abundance [Na/H]",
ylabel=["Star number", "Probability density"],
legend_labels=["AGB", "RGB"])
```

Posterior-scatter-KDE plot

* [Full example code](https://github.com/evgenyneu/tarpan/tree/master/docs/examples/posterior/save_posterior_scatter_and_kde/a01_plot)

## Common questions

* [How to change the widths of HPD intervals?](https://github.com/evgenyneu/tarpan/blob/master/docs/hpdi.md)

* [Where are plot/summary files placed and how to change that?](https://github.com/evgenyneu/tarpan/blob/master/docs/file_names.md)

## Run unit tests

```
pytest
```

## The unlicense

This work is in [public domain](https://github.com/evgenyneu/tarpan/blob/master/LICENSE).

## 🐴🐴🐴

This work is dedicated to [Tarpan](https://en.wikipedia.org/wiki/Tarpan), an extinct subspecies of wild horse.

Special thanks to Richard McElreath, who wrote [Statistical Rethinking textbook](https://xcelab.net/rm/statistical-rethinking/), as well as [Stan](https://discourse.mc-stan.org) and [arviz](https://github.com/arviz-devs/arviz) people.