Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/evilfreelancer/docker-llama.cpp-rpc
https://github.com/evilfreelancer/docker-llama.cpp-rpc
ai docker docker-compose embedding grpc llamacpp llm rpc
Last synced: 24 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/evilfreelancer/docker-llama.cpp-rpc
- Owner: EvilFreelancer
- License: mit
- Created: 2024-08-19T21:14:24.000Z (5 months ago)
- Default Branch: main
- Last Pushed: 2024-12-21T08:28:36.000Z (26 days ago)
- Last Synced: 2024-12-21T09:24:04.250Z (26 days ago)
- Topics: ai, docker, docker-compose, embedding, grpc, llamacpp, llm, rpc
- Language: Dockerfile
- Homepage:
- Size: 267 KB
- Stars: 10
- Watchers: 2
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.en.md
- License: LICENSE
Awesome Lists containing this project
README
# llama.cpp RPC-server in Docker
This project is based on [llama.cpp](https://github.com/ggerganov/llama.cpp) and compiles only
the [RPC](https://github.com/ggerganov/llama.cpp/tree/master/examples/rpc) server, along with auxiliary utilities
operating in RPC client mode, which are necessary for implementing distributed inference of Large Language Models (LLMs)
and Embedding Models converted into the GGUF format.[Русский](./README.md) | [中文](./README.zh.md) | **English**
## Overview
The general architecture of an application using the RPC server looks as follows:
![schema](./assets/schema.png)
Instead of `llama-server`, you can use `llama-cli` or `llama-embedding`, which are included in the standard container
package.Docker images are built with support for the following architectures:
* **CPU-only** - amd64, arm64, arm/v7
* **CUDA** - amd64Unfortunately, CUDA builds for arm64 fail due to an error, so they are temporarily disabled.
## Environment Variables
| Name | Default | Description |
|--------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------|
| APP_MODE | backend | Container operation mode, available options: server, backend, and none |
| APP_BIND | 0.0.0.0 | Interface to bind to |
| APP_PORT | `8080` for `server`, `50052` for `backend` | Port number on which the server is running |
| APP_MEM | 1024 | Amount of MiB of RAM available to the client; in CUDA mode, this is the amount of GPU memory |
| APP_RPC_BACKENDS | backend-cuda:50052,backend-cpu:50052 | Comma-separated addresses of backends that the container will try to connect to in `server` mode |
| APP_MODEL | /app/models/TinyLlama-1.1B-q4_0.gguf | Path to the model weights inside the container |
| APP_REPEAT_PENALTY | 1.0 | Repeat penalty |
| APP_GPU_LAYERS | 99 | Number of layers offloaded to the backend |## Example of docker-compose.yml
In this example, `llama-server` (container `main`) is launched and the
model [TinyLlama-1.1B-q4_0.gguf](https://huggingface.co/TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF/tree/main), which was
previously downloaded to the `./models` directory located at the same level as `docker-compose.yml`, is initialized. The
`./models` directory is then mounted inside the `main` container and is available at the path `/app/models`.```yaml
version: "3.9"services:
main:
image: evilfreelancer/llama.cpp-rpc:latest
restart: unless-stopped
volumes:
- ./models:/app/models
environment:
# Operation mode (RPC client in API server format)
APP_MODE: server
# Path to the model weights, preloaded inside the container
APP_MODEL: /app/models/TinyLlama-1.1B-q4_0.gguf
# Addresses of the RPC servers the client will interact with
APP_RPC_BACKENDS: backend-cuda:50052,backend-cpu:50052
ports:
- "127.0.0.1:8080:8080"backend-cpu:
image: evilfreelancer/llama.cpp-rpc:latest
restart: unless-stopped
environment:
# Operation mode (RPC server)
APP_MODE: backend
# Amount of system RAM available to the RPC server (in Megabytes)
APP_MEM: 2048backend-cuda:
image: evilfreelancer/llama.cpp-rpc:latest-cuda
restart: "unless-stopped"
environment:
# Operation mode (RPC server)
APP_MODE: backend
# Amount of GPU memory available to the RPC server (in Megabytes)
APP_MEM: 1024
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [ gpu ]
```A complete example is available in [docker-compose.dist.yml](./docker-compose.dist.yml).
As a result, we obtain the following diagram:
![schema-example](./assets/schema-example.png)
Once launched, you can make HTTP requests like this:
```shell
curl \
--request POST \
--url http://localhost:8080/completion \
--header "Content-Type: application/json" \
--data '{"prompt": "Building a website can be done in 10 simple steps:"}'
```## Manual Docker Build
Building containers in CPU-only mode:
```shell
docker build ./llama.cpp/
```Building the container for CUDA:
```shell
docker build ./llama.cpp/ --file ./llama.cpp/Dockerfile.cuda
```Using the build argument `LLAMACPP_VERSION`, you can specify the tag version, branch name, or commit hash to build the
container from. By default, the `master` branch is specified in the container.```shell
# Build the container from the tag https://github.com/ggerganov/llama.cpp/releases/tag/b3700
docker build ./llama.cpp/ --build-arg LLAMACPP_VERSION=b3700
``````shell
# Build the container from the master branch
docker build ./llama.cpp/ --build-arg LLAMACPP_VERSION=master
# or simply
docker build ./llama.cpp/
```## Manual Build Using Docker Compose
An example of docker-compose.yml that performs image building with an explicit tag specification:
```yaml
version: "3.9"services:
main:
restart: "unless-stopped"
build:
context: ./llama.cpp
args:
- LLAMACPP_VERSION=b3700
volumes:
- ./models:/app/models
environment:
APP_MODE: none
ports:
- "8080:8080"backend:
restart: "unless-stopped"
build:
context: ./llama.cpp
args:
- LLAMACPP_VERSION=b3700
environment:
APP_MODE: backend
ports:
- "50052:50052"
```## Links
- https://github.com/ggerganov/ggml/pull/761
- https://github.com/ggerganov/llama.cpp/issues/7293
- https://github.com/ggerganov/llama.cpp/pull/6829
- https://github.com/ggerganov/llama.cpp/tree/master/examples/rpc
- https://github.com/mudler/LocalAI/commit/fdb45153fed10d8a2c775633e952fdf02de60461
- https://github.com/mudler/LocalAI/pull/2324
- https://github.com/ollama/ollama/issues/4643## Citing
```text
[Pavel Rykov]. (2024). llama.cpp RPC-server in Docker. GitHub. https://github.com/EvilFreelancer/docker-llama.cpp-rpc
``````text
@misc{pavelrykov2024llamacpprpc,
author = {Pavel Rykov},
title = {llama.cpp RPC-server in Docker},
year = {2024},
url = {https://github.com/EvilFreelancer/docker-llama.cpp-rpc}
}
```