Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ewenharrison/finalfit
Quickly create elegant regression results tables and plots when modelling in R
https://github.com/ewenharrison/finalfit
Last synced: 3 months ago
JSON representation
Quickly create elegant regression results tables and plots when modelling in R
- Host: GitHub
- URL: https://github.com/ewenharrison/finalfit
- Owner: ewenharrison
- License: other
- Created: 2018-05-14T20:27:18.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2024-07-23T20:01:27.000Z (4 months ago)
- Last Synced: 2024-07-26T00:13:43.768Z (4 months ago)
- Language: HTML
- Homepage: https://finalfit.org/
- Size: 283 MB
- Stars: 263
- Watchers: 11
- Forks: 29
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
[![CRAN_Status_Badge](https://www.r-pkg.org/badges/version/finalfit)](https://cran.r-project.org/package=finalfit)
[![CRAN_Status_Badge](https://cranlogs.r-pkg.org/badges/finalfit)](https://cran.r-project.org/package=finalfit)
[![CRAN_Status_Badge](https://cranlogs.r-pkg.org/badges/grand-total/finalfit)](https://cranlogs.r-pkg.org/badges/grand-total/finalfit)
[![TravisCRAN_Status_Badge](https://api.travis-ci.com/ewenharrison/finalfit.svg?branch=master)](https://app.travis-ci.com/github/ewenharrison/finalfit)
[![Build status](https://ci.appveyor.com/api/projects/status/3wpgw2rs6vn1lsrn?svg=true)](https://ci.appveyor.com/project/ewenharrison/finalfit)
[![Coverage status](https://codecov.io/gh/ewenharrison/finalfit/branch/master/graph/badge.svg)](https://app.codecov.io/github/ewenharrison/finalfit?branch=master)finalfit
==============================The `finalfit` package provides functions that help you quickly create elegant final results tables and plots when modelling in R. These can easily be exported as Word documents, PDFs, or html files.
Its design follows Hadley Wickham's [tidy tool manifesto](https://tidyverse.tidyverse.org/articles/manifesto.html).
In addition, it provides functions for identifying and handling missing data, together with a number of functions to bootstrap simulate regression model results.
## Installation
You can install `finalfit` from CRAN:
``` r
install.packages("finalfit")
```It is recommended that this package is used together with `dplyr` which can be installed via:
``` r
install.packages("dplyr")
```## Documentation
The package documentation is maintained independently at [finalfit.org](https://finalfit.org/).
## Examples
See [Get started](https://finalfit.org/articles/finalfit.html) and the [All tables](https://finalfit.org/articles/all_tables_examples.html) vignettes for extensive examples.
### Crosstable / table 1
``` r
# Crosstable
explanatory = c("age.factor", "sex.factor", "obstruct.factor")
dependent = 'mort_5yr'
colon_s %>%
summary_factorlist(dependent, explanatory,
p=TRUE, add_dependent_label=TRUE) -> t1
knitr::kable(t1, align=c("l", "l", "r", "r", "r"))
```### Regression table
``` r
explanatory = c("age.factor", "sex.factor",
"obstruct.factor", "perfor.factor")
dependent = 'mort_5yr'
colon_s %>%
finalfit(dependent, explanatory, metrics=TRUE) -> t2
knitr::kable(t2[[1]], row.names=FALSE, align=c("l", "l", "r", "r", "r", "r"))
knitr::kable(t2[[2]], row.names=FALSE, col.names="")
```When exported to PDF:
### Regression plots
``` r
explanatory = c("age.factor", "sex.factor",
"obstruct.factor", "perfor.factor")
dependent = 'mort_5yr'
colon_s %>%
or_plot(dependent, explanatory)
```