Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/exios66/matlab
MATLAB Development Sandbox
https://github.com/exios66/matlab
Last synced: about 2 months ago
JSON representation
MATLAB Development Sandbox
- Host: GitHub
- URL: https://github.com/exios66/matlab
- Owner: Exios66
- License: mit
- Created: 2024-11-06T03:44:25.000Z (2 months ago)
- Default Branch: main
- Last Pushed: 2024-11-06T04:14:05.000Z (2 months ago)
- Last Synced: 2024-11-06T05:17:36.377Z (2 months ago)
- Language: R
- Size: 20.5 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Advanced R Data Visualization Suite
## A Comprehensive Data Visualization and Analysis Platform
![R Version](https://img.shields.io/badge/R-%3E%3D%204.0.0-blue.svg)
![License](https://img.shields.io/badge/license-MIT-green.svg)
![GitHub release (latest by date)](https://img.shields.io/github/v/release/Exios66/MATLAB)
![GitHub last commit](https://img.shields.io/github/last-commit/Exios66/MATLAB)
![GitHub issues](https://img.shields.io/github/issues/Exios66/MATLAB)
![GitHub pull requests](https://img.shields.io/github/issues-pr/Exios66/MATLAB)
![GitHub stars](https://img.shields.io/github/stars/Exios66/MATLAB)
![GitHub forks](https://img.shields.io/github/forks/Exios66/MATLAB)[![Build Status](https://github.com/Exios66/MATLAB/workflows/R-CMD-check/badge.svg)](https://github.com/Exios66/MATLAB/actions)
[![codecov](https://codecov.io/gh/Exios66/MATLAB/branch/main/graph/badge.svg)](https://codecov.io/gh/Exios66/MATLAB)
[![CRAN status](https://www.r-pkg.org/badges/version/MATLAB)](https://CRAN.R-project.org/package=MATLAB)
[![Downloads](https://cranlogs.r-pkg.org/badges/grand-total/MATLAB)](https://cran.r-project.org/package=MATLAB)[![Lifecycle: stable](https://img.shields.io/badge/lifecycle-stable-brightgreen.svg)](https://lifecycle.r-lib.org/articles/stages.html#stable)
[![R-CMD-check](https://github.com/Exios66/MATLAB/workflows/R-CMD-check/badge.svg)](https://github.com/Exios66/MATLAB/actions)
[![pkgdown](https://github.com/Exios66/MATLAB/workflows/pkgdown/badge.svg)](https://Exios66.github.io/MATLAB/)### Table of Contents
1. [Overview](#overview)
2. [Features](#features)
3. [Installation](#installation)
4. [Directory Structure](#directory-structure)
5. [Usage Guide](#usage-guide)
6. [Advanced Features](#advanced-features)
7. [Customization](#customization)
8. [Troubleshooting](#troubleshooting)
9. [Contributing](#contributing)
10. [License](#license)## Overview
The Advanced R Data Visualization Suite is a comprehensive platform for data analysis, visualization, and reporting. It combines modern UI elements with powerful R-based analytics capabilities to provide a seamless data exploration experience.
## Features
### Core Capabilities
- **Data Import & Processing**
- Multiple format support (CSV, XLSX, RDS, Feather)
- Automated data cleaning
- Advanced preprocessing options
- Real-time data validation- **Visualization Types**
- Basic: Scatter, Line, Bar, Box plots
- Advanced: Treemaps, Networks, Sunbursts, Sankey
- Statistical: Correlation, Clustering, PCA
- Interactive: 3D plots, Animated visualizations- **Analysis Tools**
- Descriptive statistics
- Correlation analysis
- Clustering algorithms
- Time series analysis
- Feature engineering### User Interface
- Modern dashboard design
- Responsive layout
- Interactive controls
- Real-time preview
- Custom themes## Installation
### Prerequisites
```r
Install required packages
install.packages(c(
```
```r
"shiny",
"shinydashboard",
"shinydashboardPlus",
"shinyjs",
"shinyWidgets",
"DT",
"waiter",
"fresh",
"bs4Dash",
"plotly",
"tidyverse",
"data.table",
"viridis",
"highcharter",
"leaflet",
"forecast",
"corrplot",
"gridExtra",
"GGally",
"ggridges",
"ggrepel",
"gganimate",
"networkD3",
"treemap",
"visNetwork",
"sunburstR",
"waffle",
"streamgraph",
"circlize",
"dendextend",
"rmarkdown"
))
```### Setup Instructions
1. Clone the repository:
```bash
git clone https://github.com/Exios66/data-visualization-suite.git
```1. Set up the directory structure:
```bash
project_root/
├── app/
│ ├── global.R
│ ├── ui.R
│ ├── server.R
│ └── www/
│ └── custom.css
├── R/
│ ├── preprocessing.R
│ ├── themes.R
│ ├── advanced_visualizations.R
│ ├── statistical_visualizations.R
│ └── report_template.Rmd
└── data/
└── example_datasets/
```1. Configure environment:
```bash
source("setup.R") # Sets up necessary directories and configurations
```## Directory Structure
- `app/`: Main application files
- `R/`: Helper functions and modules
- `templates/`: Report templates
- `data/`: Example datasets and user data
- `www/`: Static assets and CSS
- `docs/`: Documentation## Usage Guide
### Quick Start
1. Launch the application:
```bash
run_app.R
```1. Import Data:
- Click "Data Import & Preprocessing"
- Upload your data file
- Select preprocessing options- Create Visualizations:
- Choose visualization type
- Select variables
- Customize appearance
- Export or share results### Advanced Usage
#### Custom Preprocessing
```r
Custom preprocessing pipeline
preprocess_data(data, steps = c(
"clean",
"transform",
"engineer"
), params = list(
outlier_threshold = 0.05,
scaling_method = "minmax",
feature_engineering = TRUE
))
```#### Custom Visualizations
```r
Create advanced visualization
create_advanced_visualization(
data = processed_data,
viz_type = "network",
params = list(
layout = "force-directed",
node_size = "degree",
edge_weight = "correlation"
)
)
```#### Theme Customization
1. Modify `www/custom.css`
## Advanced Features
### API Integration
The suite supports integration with external APIs:
```r
Example API connection
connect_api(
endpoint = "https://api.example.com/data",
auth_token = YOUR_TOKEN,
params = list(
date_range = c("2023-01-01", "2023-12-31"),
metrics = c("sales", "revenue")
)
)
```### Automated Reporting
```r
Generate automated report
generate_report(
template = "executive_summary",
data = processed_data,
visualizations = plot_list,
output_format = "html"
)
```### Batch Processing
```r
Process multiple datasets
batch_process(
data_dir = "data/raw",
output_dir = "data/processed",
preprocessing_steps = preprocessing_pipeline
)
```## Customization
### Adding New Visualizations
1. Create new visualization function in `R/advanced_visualizations.R`
2. Register visualization in UI controls
3. Add processing logic in server function### Custom Themes
1. Modify `www/custom.css`
2. Add theme definition in `R/themes.R`
3. Update theme selector in UI## Troubleshooting
### Common Issues
1. **Data Import Errors**
- Check file format compatibility
- Verify file permissions
- Ensure proper encoding2. **Performance Issues**
- Reduce dataset size
- Enable caching
- Optimize preprocessing steps3. **Visualization Errors**
- Verify data types
- Check variable selections
- Confirm sufficient memory### Debug Mode
```r
Enable debug mode
options(shiny.trace = TRUE)
options(shiny.fullstacktrace = TRUE)
```## Contributing
1. Fork the repository
2. Create feature branch
3. Commit changes
4. Submit pull request### Development Guidelines
- Follow R style guide
- Add unit tests
- Update documentation
- Maintain backward compatibility## License
MIT License - See LICENSE file for details
## Contact
For support or feature requests:
- Create an issue
- Email:
- Documentation: