Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/exios66/matlab

MATLAB Development Sandbox
https://github.com/exios66/matlab

Last synced: about 2 months ago
JSON representation

MATLAB Development Sandbox

Awesome Lists containing this project

README

        

# Advanced R Data Visualization Suite

## A Comprehensive Data Visualization and Analysis Platform

![R Version](https://img.shields.io/badge/R-%3E%3D%204.0.0-blue.svg)
![License](https://img.shields.io/badge/license-MIT-green.svg)
![GitHub release (latest by date)](https://img.shields.io/github/v/release/Exios66/MATLAB)
![GitHub last commit](https://img.shields.io/github/last-commit/Exios66/MATLAB)
![GitHub issues](https://img.shields.io/github/issues/Exios66/MATLAB)
![GitHub pull requests](https://img.shields.io/github/issues-pr/Exios66/MATLAB)
![GitHub stars](https://img.shields.io/github/stars/Exios66/MATLAB)
![GitHub forks](https://img.shields.io/github/forks/Exios66/MATLAB)

[![Build Status](https://github.com/Exios66/MATLAB/workflows/R-CMD-check/badge.svg)](https://github.com/Exios66/MATLAB/actions)
[![codecov](https://codecov.io/gh/Exios66/MATLAB/branch/main/graph/badge.svg)](https://codecov.io/gh/Exios66/MATLAB)
[![CRAN status](https://www.r-pkg.org/badges/version/MATLAB)](https://CRAN.R-project.org/package=MATLAB)
[![Downloads](https://cranlogs.r-pkg.org/badges/grand-total/MATLAB)](https://cran.r-project.org/package=MATLAB)

[![Lifecycle: stable](https://img.shields.io/badge/lifecycle-stable-brightgreen.svg)](https://lifecycle.r-lib.org/articles/stages.html#stable)
[![R-CMD-check](https://github.com/Exios66/MATLAB/workflows/R-CMD-check/badge.svg)](https://github.com/Exios66/MATLAB/actions)
[![pkgdown](https://github.com/Exios66/MATLAB/workflows/pkgdown/badge.svg)](https://Exios66.github.io/MATLAB/)

### Table of Contents

1. [Overview](#overview)
2. [Features](#features)
3. [Installation](#installation)
4. [Directory Structure](#directory-structure)
5. [Usage Guide](#usage-guide)
6. [Advanced Features](#advanced-features)
7. [Customization](#customization)
8. [Troubleshooting](#troubleshooting)
9. [Contributing](#contributing)
10. [License](#license)

## Overview

The Advanced R Data Visualization Suite is a comprehensive platform for data analysis, visualization, and reporting. It combines modern UI elements with powerful R-based analytics capabilities to provide a seamless data exploration experience.

## Features

### Core Capabilities

- **Data Import & Processing**
- Multiple format support (CSV, XLSX, RDS, Feather)
- Automated data cleaning
- Advanced preprocessing options
- Real-time data validation

- **Visualization Types**
- Basic: Scatter, Line, Bar, Box plots
- Advanced: Treemaps, Networks, Sunbursts, Sankey
- Statistical: Correlation, Clustering, PCA
- Interactive: 3D plots, Animated visualizations

- **Analysis Tools**
- Descriptive statistics
- Correlation analysis
- Clustering algorithms
- Time series analysis
- Feature engineering

### User Interface

- Modern dashboard design
- Responsive layout
- Interactive controls
- Real-time preview
- Custom themes

## Installation

### Prerequisites

```r
Install required packages
install.packages(c(
```
```r
"shiny",
"shinydashboard",
"shinydashboardPlus",
"shinyjs",
"shinyWidgets",
"DT",
"waiter",
"fresh",
"bs4Dash",
"plotly",
"tidyverse",
"data.table",
"viridis",
"highcharter",
"leaflet",
"forecast",
"corrplot",
"gridExtra",
"GGally",
"ggridges",
"ggrepel",
"gganimate",
"networkD3",
"treemap",
"visNetwork",
"sunburstR",
"waffle",
"streamgraph",
"circlize",
"dendextend",
"rmarkdown"
))
```

### Setup Instructions

1. Clone the repository:

```bash
git clone https://github.com/Exios66/data-visualization-suite.git
```

1. Set up the directory structure:

```bash
project_root/
├── app/
│ ├── global.R
│ ├── ui.R
│ ├── server.R
│ └── www/
│ └── custom.css
├── R/
│ ├── preprocessing.R
│ ├── themes.R
│ ├── advanced_visualizations.R
│ ├── statistical_visualizations.R
│ └── report_template.Rmd
└── data/
└── example_datasets/
```

1. Configure environment:

```bash
source("setup.R") # Sets up necessary directories and configurations
```

## Directory Structure

- `app/`: Main application files
- `R/`: Helper functions and modules
- `templates/`: Report templates
- `data/`: Example datasets and user data
- `www/`: Static assets and CSS
- `docs/`: Documentation

## Usage Guide

### Quick Start

1. Launch the application:

```bash
run_app.R
```

1. Import Data:

- Click "Data Import & Preprocessing"
- Upload your data file
- Select preprocessing options

- Create Visualizations:
- Choose visualization type
- Select variables
- Customize appearance
- Export or share results

### Advanced Usage

#### Custom Preprocessing

```r
Custom preprocessing pipeline
preprocess_data(data, steps = c(
"clean",
"transform",
"engineer"
), params = list(
outlier_threshold = 0.05,
scaling_method = "minmax",
feature_engineering = TRUE
))
```

#### Custom Visualizations

```r
Create advanced visualization
create_advanced_visualization(
data = processed_data,
viz_type = "network",
params = list(
layout = "force-directed",
node_size = "degree",
edge_weight = "correlation"
)
)
```

#### Theme Customization

1. Modify `www/custom.css`

## Advanced Features

### API Integration

The suite supports integration with external APIs:

```r
Example API connection
connect_api(
endpoint = "https://api.example.com/data",
auth_token = YOUR_TOKEN,
params = list(
date_range = c("2023-01-01", "2023-12-31"),
metrics = c("sales", "revenue")
)
)
```

### Automated Reporting

```r
Generate automated report
generate_report(
template = "executive_summary",
data = processed_data,
visualizations = plot_list,
output_format = "html"
)
```

### Batch Processing

```r
Process multiple datasets
batch_process(
data_dir = "data/raw",
output_dir = "data/processed",
preprocessing_steps = preprocessing_pipeline
)
```

## Customization

### Adding New Visualizations

1. Create new visualization function in `R/advanced_visualizations.R`
2. Register visualization in UI controls
3. Add processing logic in server function

### Custom Themes

1. Modify `www/custom.css`
2. Add theme definition in `R/themes.R`
3. Update theme selector in UI

## Troubleshooting

### Common Issues

1. **Data Import Errors**
- Check file format compatibility
- Verify file permissions
- Ensure proper encoding

2. **Performance Issues**
- Reduce dataset size
- Enable caching
- Optimize preprocessing steps

3. **Visualization Errors**
- Verify data types
- Check variable selections
- Confirm sufficient memory

### Debug Mode

```r
Enable debug mode
options(shiny.trace = TRUE)
options(shiny.fullstacktrace = TRUE)
```

## Contributing

1. Fork the repository
2. Create feature branch
3. Commit changes
4. Submit pull request

### Development Guidelines

- Follow R style guide
- Add unit tests
- Update documentation
- Maintain backward compatibility

## License

MIT License - See LICENSE file for details

## Contact

For support or feature requests:

- Create an issue
- Email:
- Documentation: