Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/exios66/nlp_sentiment_analysis


https://github.com/exios66/nlp_sentiment_analysis

Last synced: 13 days ago
JSON representation

Awesome Lists containing this project

README

        

# Mental Health Text Sentiment Analysis Pipeline

## Overview

This project implements a comprehensive Natural Language Processing (NLP) pipeline for analyzing sentiment in mental health-related text data. It includes tools for data collection, preprocessing, sentiment analysis, and visualization of mental health discussions.

## Features

- Data Collection: Reddit API integration for mental health subreddits
- Text Preprocessing: Advanced NLP preprocessing using NLTK and spaCy
- Sentiment Analysis: Multiple models including VADER and BERT-based approaches
- Visualization: Interactive dashboards and statistical analysis
- Data Storage: Efficient data management and caching
- API: RESTful API for model serving

## Project Structure

```
├── data/ # Data storage
│ ├── raw/ # Raw collected data
│ ├── processed/ # Preprocessed data
│ └── models/ # Trained models
├── src/ # Source code
│ ├── data_collection/ # Scripts for data collection
│ ├── preprocessing/ # Text preprocessing modules
│ ├── models/ # Model implementation
│ ├── visualization/ # Visualization tools
│ └── api/ # API implementation
├── notebooks/ # Jupyter notebooks for analysis
├── tests/ # Unit tests
├── config/ # Configuration files
└── requirements.txt # Python dependencies
```

## Installation

1. Clone the repository:

```bash
git clone https://github.com/yourusername/NLP_Sentiment_Analysis.git
cd NLP_Sentiment_Analysis
```

1. Create a virtual environment:

```bash
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
```

2. Install dependencies:

```bash
pip install -r requirements.txt
```

4. Set up environment variables:

```bash
cp .env.example .env
# Edit .env with your API keys and configurations
```

## Usage

1. Data Collection:

```bash
python src/data_collection/reddit_scraper.py
```

1. Preprocessing:

```bash
python src/preprocessing/preprocess.py
```

3. Model Training:

```bash
python src/models/train.py
```

4. Run Analysis:

```bash
python src/visualization/analyze.py
```

5. Start API:

```bash
python src/api/app.py
```

## Configuration

- Configure data sources in `config/data_sources.yaml`
- Model parameters in `config/model_config.yaml`
- API settings in `config/api_config.yaml`

## Contributing

1. Fork the repository
2. Create your feature branch (`git checkout -b feature/amazing-feature`)
3. Commit your changes (`git commit -m 'Add amazing feature'`)
4. Push to the branch (`git push origin feature/amazing-feature`)
5. Open a Pull Request

## License

This project is licensed under the MIT License - see the LICENSE file for details.

## Authors

- Your Name

## Acknowledgments

- NLTK
- spaCy
- Transformers
- PRAW (Python Reddit API Wrapper)