Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/explosion/ml-datasets

🌊 Machine learning dataset loaders for testing and example scripts
https://github.com/explosion/ml-datasets

datasets machine-learning machine-learning-datasets spacy testing thinc

Last synced: 4 months ago
JSON representation

🌊 Machine learning dataset loaders for testing and example scripts

Awesome Lists containing this project

README

        

# Machine learning dataset loaders for testing and examples

Loaders for various machine learning datasets for testing and example scripts.
Previously in `thinc.extra.datasets`.

[![PyPi Version](https://img.shields.io/pypi/v/ml-datasets.svg?style=flat-square&logo=pypi&logoColor=white)](https://pypi.python.org/pypi/ml-datasets)

## Setup and installation

The package can be installed via pip:

```bash
pip install ml-datasets
```

## Loaders

Loaders can be imported directly or used via their string name (which is useful if they're set via command line arguments). Some loaders may take arguments – see the source for details.

```python
# Import directly
from ml_datasets import imdb
train_data, dev_data = imdb()
```

```python
# Load via registry
from ml_datasets import loaders
imdb_loader = loaders.get("imdb")
train_data, dev_data = imdb_loader()
```

### Available loaders

#### NLP datasets

| ID / Function | Description | NLP task | From URL |
| -------------------- | -------------------------------------------- | ----------------------------------------- | :------: |
| `imdb` | IMDB sentiment dataset | Binary classification: sentiment analysis | βœ“ |
| `dbpedia` | DBPedia ontology dataset | Multi-class single-label classification | βœ“ |
| `cmu` | CMU movie genres dataset | Multi-class, multi-label classification | βœ“ |
| `quora_questions` | Duplicate Quora questions dataset | Detecting duplicate questions | βœ“ |
| `reuters` | Reuters dataset (texts not included) | Multi-class multi-label classification | βœ“ |
| `snli` | Stanford Natural Language Inference corpus | Recognizing textual entailment | βœ“ |
| `stack_exchange` | Stack Exchange dataset | Question Answering | |
| `ud_ancora_pos_tags` | Universal Dependencies Spanish AnCora corpus | POS tagging | βœ“ |
| `ud_ewtb_pos_tags` | Universal Dependencies English EWT corpus | POS tagging | βœ“ |
| `wikiner` | WikiNER data | Named entity recognition | |

#### Other ML datasets

| ID / Function | Description | ML task | From URL |
| ------------- | ----------- | ----------------- | :------: |
| `mnist` | MNIST data | Image recognition | βœ“ |

### Dataset details

#### IMDB

Each instance contains the text of a movie review, and a sentiment expressed as `0` or `1`.

```python
train_data, dev_data = ml_datasets.imdb()
for text, annot in train_data[0:5]:
print(f"Review: {text}")
print(f"Sentiment: {annot}")
```

- Download URL: [http://ai.stanford.edu/~amaas/data/sentiment/](http://ai.stanford.edu/~amaas/data/sentiment/)
- Citation: [Andrew L. Maas et al., 2011](https://www.aclweb.org/anthology/P11-1015/)

| Property | Training | Dev |
| ------------------- | ---------------- | ---------------- |
| # Instances | 25000 | 25000 |
| Label values | {`0`, `1`} | {`0`, `1`} |
| Labels per instance | Single | Single |
| Label distribution | Balanced (50/50) | Balanced (50/50) |

#### DBPedia

Each instance contains an ontological description, and a classification into one of the 14 distinct labels.

```python
train_data, dev_data = ml_datasets.dbpedia()
for text, annot in train_data[0:5]:
print(f"Text: {text}")
print(f"Category: {annot}")
```

- Download URL: [Via fast.ai](https://course.fast.ai/datasets)
- Original citation: [Xiang Zhang et al., 2015](https://arxiv.org/abs/1509.01626)

| Property | Training | Dev |
| ------------------- | -------- | -------- |
| # Instances | 560000 | 70000 |
| Label values | `1`-`14` | `1`-`14` |
| Labels per instance | Single | Single |
| Label distribution | Balanced | Balanced |

#### CMU

Each instance contains a movie description, and a classification into a list of appropriate genres.

```python
train_data, dev_data = ml_datasets.cmu()
for text, annot in train_data[0:5]:
print(f"Text: {text}")
print(f"Genres: {annot}")
```

- Download URL: [http://www.cs.cmu.edu/~ark/personas/](http://www.cs.cmu.edu/~ark/personas/)
- Original citation: [David Bamman et al., 2013](https://www.aclweb.org/anthology/P13-1035/)

| Property | Training | Dev |
| ------------------- | --------------------------------------------------------------------------------------------- | --- |
| # Instances | 41793 | 0 |
| Label values | 363 different genres | - |
| Labels per instance | Multiple | - |
| Label distribution | Imbalanced: 147 labels with less than 20 examples, while `Drama` occurs more than 19000 times | - |

#### Quora

```python
train_data, dev_data = ml_datasets.quora_questions()
for questions, annot in train_data[0:50]:
q1, q2 = questions
print(f"Question 1: {q1}")
print(f"Question 2: {q2}")
print(f"Similarity: {annot}")
```

Each instance contains two quora questions, and a label indicating whether or not they are duplicates (`0`: no, `1`: yes).
The ground-truth labels contain some amount of noise: they are not guaranteed to be perfect.

- Download URL: [http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv](http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv)
- Original citation: [KornΓ©l Csernai et al., 2017](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs)

| Property | Training | Dev |
| ------------------- | ------------------------- | ------------------------- |
| # Instances | 363859 | 40429 |
| Label values | {`0`, `1`} | {`0`, `1`} |
| Labels per instance | Single | Single |
| Label distribution | Imbalanced: 63% label `0` | Imbalanced: 63% label `0` |

### Registering loaders

Loaders can be registered externally using the `loaders` registry as a decorator. For example:

```python
@ml_datasets.loaders("my_custom_loader")
def my_custom_loader():
return load_some_data()

assert "my_custom_loader" in ml_datasets.loaders
```