Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/eyecuvision/bumblebee

Video Processing API
https://github.com/eyecuvision/bumblebee

computer-vision data-processing numpy opencv torch video-processing-pipeline

Last synced: 3 months ago
JSON representation

Video Processing API

Awesome Lists containing this project

README

        

# Bumblebee
[![PyPI](https://img.shields.io/pypi/v/eyecu_bumblebee.svg)](https://pypi.python.org/pypi/eyecu_bumblebee)
[![Downloads](https://pepy.tech/badge/eyecu-bumblebee/week)](https://pepy.tech/project/eyecu-bumblebee) \
![Bumblebee image](./docs/bumblebee.png)

Bumblebee provides high level components to construct training pipelines for videos conveniently.

- [Install](#install)
- [Motivation](#motto)
- [Our Websites](#our-websites)
- [Examples](#examples)
- [A pipeline with basic elements](#a-pipeline-with-basic-elements)
- [Using Manager API](#using-manager-api)
- [Read limited section of video](#read--limited-section-of-video)
- [Iterate frames with frame numbers](#iterate-frames-with-frame-numbers)
- [Iterate frames in batches](#iterate-frames-in-batches)
- [Team](#team)
- [License](#license)

## Install

```
pip install eyecu_bumblebee
```

## Motivation

Everything should be made as simple as possible, but no simpler. - Albert Einstein

## Our Websites

[EyeCU Vision](https://eyecuvision.com/) \
[EyeCU Future](https://eyecufuture.com/)

## Examples

### A pipeline with basic elements

```python
from bumblebee import *

if __name__ == "__main__":

video_path = "/path/to/video.mp4"

# Create a source
file_stream = sources.FileStream(video_path)

# Add an effect
goto = effects.GoTo(file_stream)

END_OF_VIDEO = file_stream.get_duration()
goto(END_OF_VIDEO)

# Create a dataset
single_frame = datasets.Single(file_stream)

last_frame = single_frame.read()

```

### Using Manager API

```python
from bumblebee import *

if __name__ == "__main__":

# Create a training manager
manager = managers.BinaryClassification(
["path/to/video_dir","path/to/another_dir"],
["path/to/labels"]
)

number_of_epochs = 300

for epoch,(frame_no,frame,prob) in manager(number_of_epochs):
# Use data stuff
...

```

### Read limited section of video
```python
from bumblebee import *

if __name__ == "__main__":

video_path = "/path/to/video.mp4"
start_frame = 35
end_frame = 40

file_stream = sources.FileStream(video_path)

limited_stream = effects.Start(file_stream,start_frame)
limited_stream = effects.End(limited_stream,end_frame)

single_frame = datasets.Single(file_stream)

for frame in single_frame:
...

```

### Iterate frames with frame numbers
```python
from bumblebee import *

if __name__ == "__main__":

video_path = "/path/to/video.mp4"

file_stream = sources.FileStream(video_path)

single_frame = datasets.Single(file_stream)
current_frame = effects.CurrentFrame(file_stream)


for frame_ind,frame in zip(current_frame,single_frame):
...

```

### Iterate frames in batches

```python
from bumblebee import *

if __name__ == "__main__":

video_path = "/path/to/video.mp4"
batch_size = 64

file_stream = sources.FileStream(video_path)

batch = datasets.Batch(file_stream, batch_size=batch_size)

for frames in batch:
...

```

## Team
This project is currently developed and maintained by [ovuruska](https://github.com/ovuruska).

## License
Bumblebee has MIT license. You can find further details in [LICENSE](LICENSE).