Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/f20170604/imagenettebenchmark
https://github.com/f20170604/imagenettebenchmark
Last synced: 15 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/f20170604/imagenettebenchmark
- Owner: F20170604
- Created: 2020-05-28T13:11:20.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2020-08-30T21:31:02.000Z (about 4 years ago)
- Last Synced: 2024-10-14T23:43:05.601Z (about 1 month ago)
- Language: Swift
- Size: 18.3 MB
- Stars: 1
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# imagenetteBenchmark
PIL: https://github.com/python-pillow/Pillow
STBImage: https://github.com/nothings/stb
JPEGTurbo: https://github.com/libjpeg-turbo/libjpeg-turbo
JPEG Library: https://github.com/kelvin13/jpegCreates a subset of 1000 training images by randomly choosing 100 images from each class of Imagenette with a seed value of 42.
*----*
1.) First we get the paths of images in the datasetType
2.) Load the image using that library
3.) Convert and resize it to appropriate tensor
4.) Calculate its label
5.) Append it to final list lof tensors and labels.Benchmark Results
| size |name | time | std | iterations |
|-------------|:------------:|:------------------:|:--------------:|:---------------:|
| 160 x 160 | PIL Image Load operation | 50212789562.0 ns (50 s) | ± 2.98 % | 5 |
| 320 x 320 | PIL Image Load operation | 131345557481.0.0 ns (131 s) | ± 7.21 % | 5 |
| 160 x 160 | STBImage Image Load operation | 49629429859.0 ns (49.6 s) | ± 4.24 % | 5 |
| 320 x 320 | STBImage Image Load operation | 126589557798.0 ns (126 s) | ± 13.58 % | 5 |
| 160 x 160 | JPEGTurbo Load operation | 55647521090.5 ns (55 s) | ± 2.51 % | 5
| 320 x 320 | JPEGTurbo Load operation | 139024297588.0 ns (139 s) | ± 2.66 % | 5
| 160 x 160 | JPEG Load operation | 117379591932.5 ns (117 s) | ± 6.97 % | 5
| 320 x 320 | JPEG Load operation | 349771842833.5 ns (349 s) | ± 0.63 % | 5*----*
1.) First we get the paths of images in the datasetType
2.) Load the image using that library
3.) Convert and resize it to appropriate tensorNew Benchmark Results
| size |name | time | std | iterations |
|-------------|:------------:|:------------------:|:--------------:|:---------------:|
| 160 x 160 | PIL Image Load operation | 1119275437.5 ns (1.1 s) | ± 10.5 % | 200 |
| 320 x 320 | PIL Image Load operation | 3745457027.0 ns (3.7 s) | ± 7.97 % | 25 |
| 160 x 160 | STBImage Image Load operation | 944071793.0 ns (0.9 s) | ± 0.74 % | 5 |
| 320 x 320 | STBImage Image Load operation | 2840012321.0 ns (2.8 s) | ± 0.95 % | 5 |
| 160 x 160 | JPEGTurbo Image Load operation | 748089979.5 ns (0.75 s) | ± 2.85 % | 50 |
| 320 x 320 | JPEGTurbo Image Load operation | 1985243526.50 ns (2.0 s) | ± 3.11 % | 50 |
| 160 x 160 | JPEG Image Load operation | 52044369008.0 ns (52 s) | ± 1.99 % | 5 |
| 320 x 320 | JPEG Image Load operation | 195361269887.0 ns (195 s) | ± 1.4 % | 5 |