Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/fabianacampanari/iris-dataanalysis-seaborn-
🌸 The provided code snippet is a Python script that uses matplotlib to plot the numerical and exact derivatives of a function f4 over a range of values. The script generates a sequence of values x from -5 to 5, calculates the derivatives using two different methods, and then plots the results for comparison.
https://github.com/fabianacampanari/iris-dataanalysis-seaborn-
iris-dataset jupyter-notebook machine-learning matplotlib numpy pandas pyplot python-lambda python3 scikit-learn seaborn seaborn-plots
Last synced: 3 days ago
JSON representation
🌸 The provided code snippet is a Python script that uses matplotlib to plot the numerical and exact derivatives of a function f4 over a range of values. The script generates a sequence of values x from -5 to 5, calculates the derivatives using two different methods, and then plots the results for comparison.
- Host: GitHub
- URL: https://github.com/fabianacampanari/iris-dataanalysis-seaborn-
- Owner: FabianaCampanari
- Created: 2024-11-03T03:27:02.000Z (3 months ago)
- Default Branch: main
- Last Pushed: 2024-11-28T16:01:48.000Z (about 2 months ago)
- Last Synced: 2025-01-19T00:38:49.403Z (4 days ago)
- Topics: iris-dataset, jupyter-notebook, machine-learning, matplotlib, numpy, pandas, pyplot, python-lambda, python3, scikit-learn, seaborn, seaborn-plots
- Language: Jupyter Notebook
- Homepage:
- Size: 1.9 MB
- Stars: 3
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
Awesome Lists containing this project
README
#
🌸 Iris Data Analysis with Seaborn
This repository contains a Jupyter notebook for analyzing the famous Iris dataset using the Seaborn library. The goal is to demonstrate how to load, visualize, and analyze data with Seaborn and pandas.
## Requirements
Make sure you have the following libraries installed:
- pandas
- seaborn
- matplotlib
- numpy
- scikitlearnYou can install these libraries using pip:
```sh
pip install pandas
pip install seaborn
pip install matplotlib
pip install numpy
pip install scikit-learn
```## Introduction
This Jupyter notebook contains various code blocks that perform different tasks for data analysis and visualization. Below, we explain each of the code blocks present in the Seaborniris.ipynb file.
### Importing Libraries
First, we import the necessary libraries for data analysis and visualization.
```python
# For working with DataFrames and data manipulation
import pandas as pd# For statistical visualizations
import seaborn as sns# For creating plots
import matplotlib.pyplot as plt# For numerical operations
import numpy as np# To access datasets and tools from scikit-learn
from sklearn import datasets \
```
## Generating Data
We create a sequence of x values ranging from -5 to 5, with 100 equally spaced points.
## Loading the Dataset
We load the Iris dataset using the load_iris function from Scikit-learn and convert it into a pandas DataFrame.
```python
# Load the Iris dataset
iris_data = load_iris()# Convert to DataFrame
iris = pd.DataFrame(data=iris_data.data, columns=iris_data.feature_names)
iris['target'] = iris_data.target
```
## Visualizing the Data
We visualize the data using the Seaborn library. First, we configure the style of the plots.
```python
# Configure the style of the plots
sns.set(style="whitegrid")
```Exemple:
```python
sns.pairplot(df, hue='target')
plt.show()
```
## Pairplot
We visualize the distribution of the features with a pairplot.
We visualize the data using the Seaborn library. First, we configure the style of the plots.
```python
sns.pairplot(iris, hue='target')
plt.show()
```
## Boxplot
We create a boxplot of the sepal length by species.
```python
plt.figure(figsize=(10, 6))
sns.boxplot(x='target', y='sepal length (cm)', data=iris, color='b')
plt.title('Boxplot of Sepal Length by Species')
plt.xlabel('Species')
plt.ylabel('Sepal Length (cm)')
plt.show()
```
## Exploratory Data Analysis
We perform exploratory data analysis to better understand the features and the distribution of the classes.
Descriptive Statistics
```python
# Descriptive statistics
print(iris.describe())
```## Class Countv
```python
# Count of each class
print(iris['target'].value_counts())
````
## Generating Data
We create a sequence of x values ranging from -5 to 5, with 100 equally spaced points.
```python
x = np.linspace(-5, 5, 100)
```
## Calculating Derivatives
We calculate the derivatives of a function f4 at each point in x using two different approaches: a function derivada and a function f4_prime_exato. The results are stored in the lists y2 and _y3, respectively.
```python
y2 = []
y3 = []
for xx in x:
y2.append(derivada(f4, xx))
y3.append(f4_prime_exato(xx))
```
## Plotting the Results
We use the matplotlib library to plot the results of the calculated derivatives. The solid line (-) represents the values calculated by the derivada function, while the dashed line (--) represents the values calculated by the f4_prime_exato function.
```python
plt.plot(x, y2, '-', x, y3, '--')
plt.show()
```
##Running the Notebook
To run the notebook, you can use Jupyter Notebook or JupyterLab. Execute the following command to start Jupyter Notebook:
```python
jupyter notebook
```Open the Seaborniris .ipynb file and run the cells to see the results.