Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/fabiangroeger96/wandb-callbacks
Additional Callbacks for Weights & Biases to monitor your models even better :mag_right:
https://github.com/fabiangroeger96/wandb-callbacks
callback experiment-track hyperparameter-search keras machine-learning tensorflow weights-and-biases
Last synced: 15 days ago
JSON representation
Additional Callbacks for Weights & Biases to monitor your models even better :mag_right:
- Host: GitHub
- URL: https://github.com/fabiangroeger96/wandb-callbacks
- Owner: FabianGroeger96
- License: mit
- Created: 2021-04-26T16:12:25.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2021-06-02T16:36:42.000Z (over 3 years ago)
- Last Synced: 2024-10-04T21:04:07.446Z (about 1 month ago)
- Topics: callback, experiment-track, hyperparameter-search, keras, machine-learning, tensorflow, weights-and-biases
- Language: Python
- Homepage: https://fabiangroeger96.github.io/wandb-callbacks/
- Size: 5.79 MB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: LICENSE
Awesome Lists containing this project
README
[![PyPI version](https://badge.fury.io/py/wandb-callbacks.svg)](https://badge.fury.io/py/wandb-callbacks)
[![GitHub Issues](https://img.shields.io/github/issues/FabianGroeger96/wandb-callbacks)](https://img.shields.io/github/issues/FabianGroeger96/wandb-callbacks)
[![License](https://img.shields.io/github/license/FabianGroeger96/wandb-callbacks)](https://img.shields.io/github/license/FabianGroeger96/wandb-callbacks)
![Contribotion](https://img.shields.io/badge/Contribution-Welcome-brightgreen)
# Weights & Biases Callbacks
`wandb-callbacks` provides some additional Callbacks for Weights & Biases.Callbacks currently implemented:
* `ActivationCallback`
* visualizes the activations of a layer
* activations are computed for a sample of each class
* `DeadReluCallback`
* logs the number of dead relus in each layer
* prints warning if the percentage is higher than a threshold
* `GradCAMCallback`
* [Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization](https://arxiv.org/pdf/1610.02391.pdf)
* produces a coarse localization map highlighting the important regions in the image for predicting the class of the image## Installation
### Last Stable Release
```python
pip install wandb-callbacks
```### Latest Development Changes
```bash
git clone https://github.com/FabianGroeger96/wandb-callbacks
```## Sample Implementation
Can be found in `notebooks/sample_implementation.ipynb`.## Contributing
Open to ideas and for helpers to develop the package further.