Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/fabriziomusacchio/python_course

This is the course material for the introductory course into Python basics for Data Scientists.
https://github.com/fabriziomusacchio/python_course

jupyter jupyter-notebook python teaching teaching-materials

Last synced: 2 months ago
JSON representation

This is the course material for the introductory course into Python basics for Data Scientists.

Awesome Lists containing this project

README

        

# Python: Basics for Data Scientists

This is the course material for the introductory course into [_Python Basics for Data Scientists_](https://www.fabriziomusacchio.com/teaching/python_course).

[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/FabrizioMusacchio/Python_Course/HEAD) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/FabrizioMusacchio/Python_Course/) [![Generic badge](https://img.shields.io/badge/website-link-.svg)](https://www.fabriziomusacchio.com/teaching/python_course) [![License](https://img.shields.io/badge/license-CC%20BY%e2%80%93NC%e2%80%93SA%204.0-orange.svg)](https://github.com/FabrizioMusacchio/Python_Course/blob/master/LICENSE.md)

## Chapters

* Chapter 1: [**Scientific programming languages**](https://www.fabriziomusacchio.com/teaching/python_course/01_introduction) (⟶ course website)
* Chapter 2: [**Getting started with Anaconda and Spyder**](https://www.fabriziomusacchio.com/teaching/python_course/02_python_ide) (⟶ course website)
* Chapter 3: [**Jupyter Notebooks**](https://www.fabriziomusacchio.com/teaching/python_course/03_jupyter) (⟶ course website)
* Chapter 4: [**Variables**](https://github.com/FabrizioMusacchio/Python_Course/blob/master/01.04%20Variables.ipynb)
* Chapter 5: [**Formatted printing**](https://github.com/FabrizioMusacchio/Python_Course/blob/master/01.05%20Formatted%20printing.ipynb)
* Chapter 6: [**Deep vs. shallow copy**](https://github.com/FabrizioMusacchio/Python_Course/blob/master/01.06%20deep%20vs.%20shallow%20copy.ipynb)
* Chapter 7: [**for-loops**](https://github.com/FabrizioMusacchio/Python_Course/blob/master/01.07%20for%20loops.ipynb)
* Chapter 8: [**if-conditions**](https://github.com/FabrizioMusacchio/Python_Course/blob/master/01.08%20if%20conditions.ipynb)
* Chapter 9: [**Function definitions**](https://github.com/FabrizioMusacchio/Python_Course/blob/master/01.09%20Function%20definitions.ipynb)
* Chapter 10: [**NumPy - Our data container**](https://github.com/FabrizioMusacchio/Python_Course/blob/master/01.10%20NumPy%2C%20The%20%22container%22%20for%20our%20data.ipynb)
* Chapter 11: [**Data visualization with Matplotlib**](https://github.com/FabrizioMusacchio/Python_Course/blob/master/01.11%20Data%20Visualization%20with%20Matplotlib.ipynb)
* Chapter 12: [**Reading Data with Pandas**](https://github.com/FabrizioMusacchio/Python_Course/blob/master/01.12%20Reading%20Data%20with%20Pandas.ipynb)
* Chapter 13: [**Statistical Analysis with Pingouin**](https://github.com/FabrizioMusacchio/Python_Course/blob/master/01.13%20Statistical%20Analysis%20with%20Pingouin.ipynb)
* [**Further Readings**](https://www.fabriziomusacchio.com/teaching/python_course/90_further_readings) (⟶ course website)


After the first part of this course, i.e., after Chapter 9, you can voluntarily solve the following intermediate exercises:
* [**Voluntary homework**](https://github.com/FabrizioMusacchio/Python_Course/blob/master/Voluntary%20homework.ipynb)

## Course requirements
Please visit the [course website](https://www.fabriziomusacchio.com/teaching/python_course#current-announcements/#course-requirements) for further details.

## Course announcements
Please visit the [course website](https://www.fabriziomusacchio.com/teaching/python_course/#current-announcements) for further details.

## Follow-up
Don’t miss the [_Python Neuro-Practical_ course](https://www.fabriziomusacchio.com/teaching/python_course_neuropractical/), where you can apply your newly learned programming skills ‍🧑‍💻.

## License
This course material is under [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License (CC BY-NC-SA 4.0)](https://github.com/FabrizioMusacchio/Python_Neuro_Practical/blob/master/LICENSE.md). [How to give attribution](https://creativecommons.org/use-remix/attribution/) (example):

"[Python: Basics for Data Scientists](https://www.fabriziomusacchio.com/teaching/python_course/)" by [Fabrizio Musacchio](https://www.fabriziomusacchio.com/) is licensed under [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/).