Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/facebookarchive/models
A repository for storing pre-trained Caffe2 models.
https://github.com/facebookarchive/models
Last synced: 12 days ago
JSON representation
A repository for storing pre-trained Caffe2 models.
- Host: GitHub
- URL: https://github.com/facebookarchive/models
- Owner: facebookarchive
- License: apache-2.0
- Archived: true
- Created: 2017-02-17T19:16:40.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2019-08-01T06:22:11.000Z (over 5 years ago)
- Last Synced: 2024-05-22T07:49:23.596Z (6 months ago)
- Language: Python
- Size: 29.2 MB
- Stars: 423
- Watchers: 61
- Forks: 127
- Open Issues: 26
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
README
# Caffe2 Model Repository
This is a repository for storing pre-trained Caffe2 models.
You can use Caffe2 to help you download or install the models on your machine.### Prerequisites
Install [Caffe2](https://github.com/caffe2/caffe2) with Python bindings.
### Download
To download a model locally, run
python -m caffe2.python.models.download squeezenet
which will create a folder `squeezenet/` containing both an `init_net.pb` and `predict_net.pb`.
### Install
To install a model, run
python -m caffe2.python.models.download -i squeezenet
which will allow later `import`s of the model directly in Python:
from caffe2.python.models import squeezenet
print(squeezenet.init_net.name)
print(squeezenet.predict_net.name)### Subdirectories
To download a model in a subdirectory (for example, style transfer), run
python -m caffe2.python.models.download style_transfer/crayon
and this will create a folder `style_transfer/crayon/` containing both an `init_net.pb` and `predict_net.pb`.
Same applies to the `-i` install option.