Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/facebookresearch/habitat-sim
A flexible, high-performance 3D simulator for Embodied AI research.
https://github.com/facebookresearch/habitat-sim
ai computer-vision cplusplus robotics sim2real simulator
Last synced: about 1 month ago
JSON representation
A flexible, high-performance 3D simulator for Embodied AI research.
- Host: GitHub
- URL: https://github.com/facebookresearch/habitat-sim
- Owner: facebookresearch
- License: mit
- Created: 2019-02-04T23:14:28.000Z (almost 6 years ago)
- Default Branch: main
- Last Pushed: 2024-04-12T16:08:29.000Z (7 months ago)
- Last Synced: 2024-04-13T12:27:18.993Z (7 months ago)
- Topics: ai, computer-vision, cplusplus, robotics, sim2real, simulator
- Language: C++
- Homepage: https://aihabitat.org/
- Size: 103 MB
- Stars: 2,346
- Watchers: 78
- Forks: 391
- Open Issues: 166
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
- AiTreasureBox - facebookresearch/habitat-sim - 11-02_2628_0](https://img.shields.io/github/stars/facebookresearch/habitat-sim.svg)|A flexible, high-performance 3D simulator for Embodied AI research.| (Repos)
- StarryDivineSky - facebookresearch/habitat-sim
README
[![CircleCI](https://circleci.com/gh/facebookresearch/habitat-sim.svg?style=shield)](https://circleci.com/gh/facebookresearch/habitat-sim)
[![codecov](https://codecov.io/gh/facebookresearch/habitat-sim/branch/main/graph/badge.svg)](https://codecov.io/gh/facebookresearch/habitat-sim)
[![GitHub license](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/facebookresearch/habitat-sim/blob/main/LICENSE)
[![Conda Version Badge](https://img.shields.io/conda/vn/aihabitat/habitat-sim?color=blue&label=conda%20version)](https://anaconda.org/aihabitat/habitat-sim)
[![Conda Platforms support Badge](https://img.shields.io/conda/pn/aihabitat/habitat-sim?color=orange&label=platforms)](https://anaconda.org/aihabitat/habitat-sim)
[![Documentation](https://img.shields.io/badge/docs-automated-green.svg)](https://aihabitat.org/docs/habitat-sim/)
[![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://github.com/pre-commit/pre-commit)
[![Python 3.9](https://img.shields.io/badge/python-3.9.svg)](https://www.python.org/downloads/release/)
[![Supports Bullet](https://img.shields.io/static/v1?label=supports&message=Bullet%20Physics&color=informational&link=https://opensource.google/projects/bullet3)](https://opensource.google/projects/bullet3)
[![Twitter Follow](https://img.shields.io/twitter/follow/ai_habitat?style=social)](https://twitter.com/ai_habitat)# Habitat-Sim
A high-performance physics-enabled 3D simulator with support for:
- 3D scans of indoor/outdoor spaces (with built-in support for [HM3D](https://aihabitat.org/datasets/hm3d/), [MatterPort3D](https://niessner.github.io/Matterport/), [Gibson](http://gibsonenv.stanford.edu/database/), [Replica](https://github.com/facebookresearch/Replica-Dataset), and other datasets)
- CAD models of spaces and piecewise-rigid objects (e.g. [ReplicaCAD](https://aihabitat.org/datasets/replica_cad/), [YCB](https://www.ycbbenchmarks.com/), [Google Scanned Objects](https://app.ignitionrobotics.org/GoogleResearch/fuel/collections/Google%20Scanned%20Objects)),
- Configurable sensors (RGB-D cameras, egomotion sensing)
- Robots described via URDF (mobile manipulators like [Fetch](http://docs.fetchrobotics.com/), fixed-base arms like [Franka](https://www.franka.de/), quadrupeds like [AlienGo](https://www.unitree.com/products/aliengo/)),
- Rigid-body mechanics (via [Bullet](https://github.com/bulletphysics/bullet3)).The design philosophy of Habitat is to prioritize simulation speed over the breadth of simulation capabilities. When rendering a scene from the Matterport3D dataset, Habitat-Sim achieves several thousand frames per second (FPS) running single-threaded and reaches over 10,000 FPS multi-process on a single GPU. Habitat-Sim simulates a Fetch robot interacting in ReplicaCAD scenes at over 8,000 steps per second (SPS), where each ‘step’ involves rendering 1 RGBD observation (128×128 pixels) and rigid-body dynamics for 1/30sec.
Habitat-Sim is typically used with
[Habitat-Lab](https://github.com/facebookresearch/habitat-lab), a modular high-level library for end-to-end experiments in embodied AI -- defining embodied AI tasks (e.g. navigation, instruction following, question answering), training agents (via imitation or reinforcement learning, or no learning at all as in classical SensePlanAct pipelines), and benchmarking their performance on the defined tasks using standard metrics.## [Questions or Comments? Join the AI Habitat community discussions forum.](https://github.com/facebookresearch/habitat-lab/discussions)
[![Habitat Demo](https://img.shields.io/static/v1?label=WebGL&message=Try%20AI%20Habitat%20In%20Your%20Browser%20&color=blue&logo=webgl&labelColor=%23990000&style=for-the-badge&link=https://aihabitat.org/demo)](https://aihabitat.org/demo)
https://user-images.githubusercontent.com/2941091/126080914-36dc8045-01d4-4a68-8c2e-74d0bca1b9b8.mp4
---
## Table of contents
1. [Citing Habitat](#citing-habitat)
1. [Installation](#installation)
1. [Testing](#testing)
1. [Documentation](#documentation)
1. [Datasets](#datasets)
1. [External Contributions](#external-contributions)
1. [License](#license)## Citing Habitat
If you use the Habitat platform in your research, please cite the [Habitat 1.0](https://arxiv.org/abs/1904.01201), [Habitat 2.0](https://arxiv.org/abs/2106.14405), and [Habitat 3.0](https://arxiv.org/abs/2310.13724) papers:```
@misc{puig2023habitat3,
title = {Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots},
author = {Xavi Puig and Eric Undersander and Andrew Szot and Mikael Dallaire Cote and Ruslan Partsey and Jimmy Yang and Ruta Desai and Alexander William Clegg and Michal Hlavac and Tiffany Min and Theo Gervet and Vladimír Vondruš and Vincent-Pierre Berges and John Turner and Oleksandr Maksymets and Zsolt Kira and Mrinal Kalakrishnan and Jitendra Malik and Devendra Singh Chaplot and Unnat Jain and Dhruv Batra and Akshara Rai and Roozbeh Mottaghi},
year={2023},
archivePrefix={arXiv},
}@inproceedings{szot2021habitat,
title = {Habitat 2.0: Training Home Assistants to Rearrange their Habitat},
author = {Andrew Szot and Alex Clegg and Eric Undersander and Erik Wijmans and Yili Zhao and John Turner and Noah Maestre and Mustafa Mukadam and Devendra Chaplot and Oleksandr Maksymets and Aaron Gokaslan and Vladimir Vondrus and Sameer Dharur and Franziska Meier and Wojciech Galuba and Angel Chang and Zsolt Kira and Vladlen Koltun and Jitendra Malik and Manolis Savva and Dhruv Batra},
booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
year = {2021}
}@inproceedings{habitat19iccv,
title = {Habitat: {A} {P}latform for {E}mbodied {AI} {R}esearch},
author = {Manolis Savva and Abhishek Kadian and Oleksandr Maksymets and Yili Zhao and Erik Wijmans and Bhavana Jain and Julian Straub and Jia Liu and Vladlen Koltun and Jitendra Malik and Devi Parikh and Dhruv Batra},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
year = {2019}
}
```Habitat-Sim also builds on work contributed by others. If you use contributed methods/models, please cite their works. See the [External Contributions](#external-contributions) section
for a list of what was externally contributed and the corresponding work/citation.## Installation
Habitat-Sim can be installed in 3 ways:
1. Via Conda - Recommended method for most users. Stable release and nightly builds.
1. [Experimental] Via PIP - `pip install .` to compile the latest headless build with Bullet. Read [build instructions and common build issues](BUILD_FROM_SOURCE.md).
1. Via Docker - Updated approximately once per year for the [Habitat Challenge](https://aihabitat.org/challenge/). Read [habitat-docker-setup](https://github.com/facebookresearch/habitat-lab#docker-setup).
1. Via Source - For active development. Read [build instructions and common build issues](BUILD_FROM_SOURCE.md).### [Recommended] Conda Packages
Habitat is under active development, and we advise users to restrict themselves to [stable releases](https://github.com/facebookresearch/habitat-sim/releases). Starting with v0.1.4, we provide [conda packages for each release](https://anaconda.org/aihabitat).
1. **Preparing conda env**
Assuming you have [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) installed, let's prepare a conda env:
```bash
# We require python>=3.9 and cmake>=3.10
conda create -n habitat python=3.9 cmake=3.14.0
conda activate habitat
```1. **conda install habitat-sim**
Pick one of the options below depending on your system/needs:
- To install on machines with an attached display:
```bash
conda install habitat-sim -c conda-forge -c aihabitat
```
- To install on headless machines (i.e. without an attached display, e.g. in a cluster) and machines with multiple GPUs (this parameter relies on EGL and thus does *not* work on MacOS):
```
conda install habitat-sim headless -c conda-forge -c aihabitat
```
- [**Most common scenario**] To install habitat-sim with bullet physics
```
conda install habitat-sim withbullet -c conda-forge -c aihabitat
```- Note: Build parameters can be chained together. For instance, to install habitat-sim with physics on headless machines:
```
conda install habitat-sim withbullet headless -c conda-forge -c aihabitat
```Conda packages for older versions can installed by explicitly specifying the version, e.g. `conda install habitat-sim=0.1.6 -c conda-forge -c aihabitat`.
We also provide a [nightly conda build for the main branch](https://anaconda.org/aihabitat-nightly). However, this should only be used if you need a specific feature not yet in the latest release version. To get the nightly build of the latest main, simply swap `-c aihabitat` for `-c aihabitat-nightly`.
## Testing
1. Let's download some 3D assets using our python data download utility:
- Download (testing) 3D scenes
```bash
python -m habitat_sim.utils.datasets_download --uids habitat_test_scenes --data-path /path/to/data/
```
Note that these testing scenes do not provide semantic annotations.
If you would like to test the semantic sensors via `example.py`, please use the data from the Matterport3D dataset (see [Datasets](DATASETS.md)).- Download example objects
```bash
python -m habitat_sim.utils.datasets_download --uids habitat_example_objects --data-path /path/to/data/
```1. **Interactive testing**: Use the interactive viewer included with Habitat-Sim in either C++ or python:
```bash
#C++
# ./build/viewer if compiling locally
habitat-viewer /path/to/data/scene_datasets/habitat-test-scenes/skokloster-castle.glb#Python
#NOTE: depending on your choice of installation, you may need to add '/path/to/habitat-sim' to your PYTHONPATH.
#e.g. from 'habitat-sim/' directory run 'export PYTHONPATH=$(pwd)'
python examples/viewer.py --scene /path/to/data/scene_datasets/habitat-test-scenes/skokloster-castle.glb
```
You should be able to control an agent in this test scene.
Use W/A/S/D keys to move forward/left/backward/right and arrow keys or mouse (LEFT click) to control gaze direction (look up/down/left/right).
Try to find the picture of a woman surrounded by a wreath.
Have fun!1. **Physical interactions**: Habitat-sim provides rigid and articulated dynamics simulation via integration with [Bullet physics](https://pybullet.org/).
Try it out now with our interactive viewer functionality in C++ or python.First, download our fully interactive [ReplicaCAD apartment dataset](https://aihabitat.org/datasets/replica_cad/) (140 MB):
```bash
#NOTE: by default, data will be downloaded into habitat-sim/data/. Optionally modify the data path by adding: `--data-path /path/to/data/`
# with conda install
python -m habitat_sim.utils.datasets_download --uids replica_cad_dataset# with source (from inside habitat_sim/)
python src_python/habitat_sim/utils/datasets_download.py --uids replica_cad_dataset
```
- Alternatively, 105 scene variations with pre-baked lighting are available via `--uids replica_cad_baked_lighting` (480 MB).Then load a ReplicaCAD scene in the viewer application with physics enabled. If you modified the data path above, also modify it in viewer calls below.
```bash
#C++
# ./build/viewer if compiling locally
habitat-viewer --enable-physics --dataset data/replica_cad/replicaCAD.scene_dataset_config.json -- apt_1#python
#NOTE: habitat-sim/ directory must be on your `PYTHONPATH`
python examples/viewer.py --dataset data/replica_cad/replicaCAD.scene_dataset_config.json --scene apt_1
```
- Using scenes with pre-baked lighting instead? Use `--dataset data/replica_cad_baked_lighting/replicaCAD_baked.scene_dataset_config.json --scene Baked_sc1_staging_00`The viewer application outputs the full list of keyboard and mouse interface options to the console at runtime.
Quickstart Example:
- `WASD` to move
- `LEFT` click and drag the mouse to look around
- press `SPACE` to toggle simulation off/on (default on)
- press `'m'` to switch to "GRAB" mouse mode
- now `LEFT` or `RIGHT` click and drag to move objects or open doors/drawers and release to drop the object
- with an object gripped, scroll the mouse wheel to:
- (default): move it closer or farther away
- (+`ALT`): rotate object fixed constraint frame (yaw)
- (+`CTRL`): rotate object fixed constraint frame (pitch)
- (+`ALT`+`CTRL`): rotate object fixed constraint frame (roll)1. **Non-interactive testing** (e.g. for headless systems): Run the example script:
```bash
python /path/to/habitat-sim/examples/example.py --scene /path/to/data/scene_datasets/habitat-test-scenes/skokloster-castle.glb
```
The agent will traverse a particular path and you should see the performance stats at the very end, something like this:
`640 x 480, total time: 3.208 sec. FPS: 311.7`.To reproduce the benchmark table from [Habitat ICCV'19](https://arxiv.org/abs/1904.01201) run `examples/benchmark.py --scene /path/to/mp3d_example/17DRP5sb8fy/17DRP5sb8fy.glb`.
Additional arguments to `example.py` are provided to change the sensor configuration, print statistics of the semantic annotations in a scene, compute action-space shortest path trajectories, and set other useful functionality. Refer to the `example.py` and `demo_runner.py` source files for an overview.
Load a specific MP3D or Gibson house: `examples/example.py --scene path/to/mp3d/house_id.glb`.
We have also provided an [example demo](https://aihabitat.org/docs/habitat-lab/habitat-lab-demo.html) for reference.
To run a physics example in python (after building with "Physics simulation via Bullet"):
```bash
python examples/example.py --scene /path/to/data/scene_datasets/habitat-test-scenes/skokloster-castle.glb --enable_physics
```
Note that in this mode the agent will be frozen and oriented toward the spawned physical objects. Additionally, `--save_png` can be used to output agent visual observation frames of the physical scene to the current directory.### Common testing issues
- If you are running on a remote machine and experience display errors when initializing the simulator, e.g.
```bash
X11: The DISPLAY environment variable is missing
Could not initialize GLFW
```ensure you do not have `DISPLAY` defined in your environment (run `unset DISPLAY` to undefine the variable)
- If you see libGL errors like:
```bash
X11: The DISPLAY environment variable is missing
Could not initialize GLFW
```chances are your libGL is located at a non-standard location. See e.g. [this issue](https://askubuntu.com/questions/541343/problems-with-libgl-fbconfigs-swrast-through-each-update).
## Documentation
Browse the online [Habitat-Sim documentation](https://aihabitat.org/docs/habitat-sim/index.html).
Check out our [ECCV tutorial series](https://aihabitat.org/tutorial/2020/) for a hands-on quickstart experience.
Can't find the answer to your question? Try asking the developers and community on our [Discussions forum](https://github.com/facebookresearch/habitat-lab/discussions).
## Datasets
[HowTo use common supported datasets with Habitat-Sim](DATASETS.md).
## External Contributions
* If you use the noise model from PyRobot, please cite the their [technical report](https://github.com/facebookresearch/pyrobot#citation).
Specifically, the noise model used for the noisy control functions named `pyrobot_*` and defined in `src_python/habitat_sim/agent/controls/pyrobot_noisy_controls.py`
* If you use the Redwood Depth Noise Model, please cite their [paper](http://redwood-data.org/indoor/)
Specifically, the noise model defined in `src_python/habitat_sim/sensors/noise_models/redwood_depth_noise_model.py` and `src/esp/sensor/RedwoodNoiseModel.*`
## License
Habitat-Sim is MIT licensed. See the [LICENSE](LICENSE) for details.
The WebGL demo and demo scripts use:
- [The King´s Hall](https://sketchfab.com/3d-models/the-king-s-hall-d18155613363445b9b68c0c67196d98d) by [Skokloster Castle (Skoklosters slott)](https://sketchfab.com/SkoklosterCastle) licensed under [Creative Commons Attribution](http://creativecommons.org/licenses/by/4.0/)
- [Van Gogh Room](https://sketchfab.com/3d-models/van-gogh-room-311d052a9f034ba8bce55a1a8296b6f9) by [ruslans3d](https://sketchfab.com/ruslans3d) licensed under [Creative Commons Attribution](http://creativecommons.org/licenses/by/4.0/)