Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/facebookresearch/vizseq
An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.)
https://github.com/facebookresearch/vizseq
Last synced: 2 days ago
JSON representation
An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.)
- Host: GitHub
- URL: https://github.com/facebookresearch/vizseq
- Owner: facebookresearch
- License: mit
- Created: 2019-08-26T13:19:38.000Z (about 5 years ago)
- Default Branch: main
- Last Pushed: 2024-10-29T16:15:42.000Z (10 days ago)
- Last Synced: 2024-11-04T17:47:40.334Z (4 days ago)
- Language: Python
- Homepage: https://arxiv.org/abs/1909.05424
- Size: 19 MB
- Stars: 442
- Watchers: 16
- Forks: 59
- Open Issues: 8
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
- awesome-python-machine-learning-resources - GitHub - 40% open · ⏱️ 20.07.2022): (文本数据和NLP)
- awesome-nlg - VizSeq - A Visual Analysis Toolkit for Text Generation Tasks. (Evaluation)
README
[![PyPI](https://img.shields.io/pypi/v/vizseq?style=flat-square)](https://pypi.org/project/vizseq/)
[![CircleCI](https://img.shields.io/circleci/build/github/facebookresearch/vizseq?style=flat-square)](https://circleci.com/gh/facebookresearch/vizseq)
![PyPI - License](https://img.shields.io/pypi/l/vizseq?style=flat-square)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/vizseq?style=flat-square)#
VizSeq is a Python toolkit for visual analysis on text generation tasks like machine translation, summarization,
image captioning, speech translation and video description. It takes multi-modal sources,
text references as well as text predictions as inputs, and analyzes them visually
in [Jupyter Notebook](https://facebookresearch.github.io/vizseq/docs/getting_started/ipynb_example) or a
built-in [Web App](https://facebookresearch.github.io/vizseq/docs/getting_started/web_app_example)
(the former has [Fairseq integration](https://facebookresearch.github.io/vizseq/docs/getting_started/fairseq_example)).
VizSeq also provides a collection of [multi-process scorers](https://facebookresearch.github.io/vizseq/docs/features/metrics) as
a normal Python package.[[Paper]](https://arxiv.org/pdf/1909.05424.pdf)
[[Documentation]](https://facebookresearch.github.io/vizseq)
[[Blog]](https://ai.facebook.com/blog/vizseq-a-visual-analysis-toolkit-for-accelerating-text-generation-research)
### Task Coverage
| Source | Example Tasks |
| :--- | :--- |
| Text | Machine translation, text summarization, dialog generation, grammatical error correction, open-domain question answering |
| Image | Image captioning, image question answering, optical character recognition |
| Audio | Speech recognition, speech translation |
| Video | Video description |
| Multimodal | Multimodal machine translation### Metric Coverage
**Accelerated with multi-processing/multi-threading.**| Type | Metrics |
| :--- | :--- |
| N-gram-based | BLEU ([Papineni et al., 2002](https://www.aclweb.org/anthology/P02-1040)), NIST ([Doddington, 2002](http://www.mt-archive.info/HLT-2002-Doddington.pdf)), METEOR ([Banerjee et al., 2005](https://www.aclweb.org/anthology/W05-0909)), TER ([Snover et al., 2006](http://mt-archive.info/AMTA-2006-Snover.pdf)), RIBES ([Isozaki et al., 2010](https://www.aclweb.org/anthology/D10-1092)), chrF ([Popović et al., 2015](https://www.aclweb.org/anthology/W15-3049)), GLEU ([Wu et al., 2016](https://arxiv.org/pdf/1609.08144.pdf)), ROUGE ([Lin, 2004](https://www.aclweb.org/anthology/W04-1013)), CIDEr ([Vedantam et al., 2015](https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Vedantam_CIDEr_Consensus-Based_Image_2015_CVPR_paper.pdf)), WER |
| Embedding-based | LASER ([Artetxe and Schwenk, 2018](https://arxiv.org/pdf/1812.10464.pdf)), BERTScore ([Zhang et al., 2019](https://arxiv.org/pdf/1904.09675.pdf)) |## Getting Started
### Installation
VizSeq requires **Python 3.6+** and currently runs on **Unix/Linux** and **macOS/OS X**. It will support **Windows** as well in the future.You can install VizSeq from PyPI repository:
```bash
$ pip install vizseq
```Or install it from source:
```bash
$ git clone https://github.com/facebookresearch/vizseq
$ cd vizseq
$ pip install -e .
```### [Documentation](https://facebookresearch.github.io/vizseq)
### Jupyter Notebook Examples
- [Basic example](https://facebookresearch.github.io/vizseq/docs/getting_started/ipynb_example)
- [Multimodal Machine Translation](examples/multimodal_machine_translation.ipynb)
- [Multilingual Machine Translation](examples/multilingual_machine_translation.ipynb)
- [Speech Translation](examples/speech_translation.ipynb)### [Fairseq integration](https://facebookresearch.github.io/vizseq/docs/getting_started/fairseq_example)
### [Web App Example](https://facebookresearch.github.io/vizseq/docs/getting_started/web_app_example)
Download example data:
```bash
$ git clone https://github.com/facebookresearch/vizseq
$ cd vizseq
$ bash get_example_data.sh
```
Launch the web server:
```bash
$ python -m vizseq.server --port 9001 --data-root ./examples/data
```
And then, navigate to the following URL in your web browser:
```text
http://localhost:9001
```## License
VizSeq is licensed under [MIT](https://github.com/facebookresearch/vizseq/blob/master/LICENSE). See the [LICENSE](https://github.com/facebookresearch/vizseq/blob/master/LICENSE) file for details.## Citation
Please cite as
```
@inproceedings{wang2019vizseq,
title = {VizSeq: A Visual Analysis Toolkit for Text Generation Tasks},
author = {Changhan Wang, Anirudh Jain, Danlu Chen, Jiatao Gu},
booktitle = {In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
year = {2019},
}
```## Contact
Changhan Wang ([[email protected]](mailto:[email protected])), Jiatao Gu ([[email protected]](mailto:[email protected]))